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Resumen 

Este proyecto de fin de máster consiste en utilizar la arquitectura LaneNet descrita en el 

paper Towards End-to-End Lane Detection: an Instance Segmentation Approach [1] para 

la detección de carriles en tiempo real. Esta arquitectura aplica el deep learning y el 

clustering para lograr la instance segmentation de los carriles en tiempo real. Consiste en 

un autoencoder con una parte de codificación común y una parte de decodificación 

dividida en dos ramas: la rama de la segmentación binaria y la rama del embedding. Este 

modelo ha sido entrenando sobre el TuSimple dataset que es un conjunto de datos que se 

suele utilizar de benchmark en los problemas de percepción para vehículos autónomos y 

ha sido desarrollado en Python con Keras utilizando la computación en la nube de Google 

Colaboratory, 

Los resultados de la rama de segmentación binaria han sido muy buenos logrando así 

resultados parecidos a los del paper [1]. Sin embargo, la rama del embedding, no han 

podido ser replicados a pesar de reproducir tanto la arquitectura como los hiperparámetros 

del paper. Esto se debe a una falta importante de detalle a la hora de describir dicha 

arquitectura. 

Además, todo este proceso ha servido para detectar errores importantes en 

implementaciones de esta arquitectura disponibles en github muy bien valoradas, pero 

que no son fieles al contenido del paper. 

 

Descriptores 

• Deep Learning 

• Computer Vision 

• Autonomous Driving
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1. INTRODUCCIÓN 

En los últimos 6 años, los vehículos autónomos han atraído una inmensa cantidad de 

capital por parte de inversores y grandes compañías tecnológicas y automovilísticas. Esto 

ha generado una carrera y una feroz competencia para buscar una tecnología que permita 

la conducción autónoma total que, a día de hoy, sigue muy disputada. 

1.1 HISTORIA 

Desde que se inventaron los vehículos, la tecnología se ha ido puliendo década tras década 

convirtiéndolos así en vehículos con mayor autonomía, más seguros, más fáciles de 

manejar y más inteligentes. Esta tendencia se ha seguido cumpliendo durante décadas 

pero fue en el año 2004 cuando se comenzó a pensar en alcanzar otro nivel que parecía 

imposible para la época. En 2004, el DARPA [2], Defense Advanced Research Projects 

Agency, organizó el primer DARPA Grand Challenge [3]. En esta competición, vehículos 

autónomos se enfrentaron en una carrera de 240 km a través del desierto de Mojave de 

los Estados Unidos atravesándolo desde Barstow (California) hasta pasada la frontera de 

California con Nevada. A pesar de que había muchos intereses puestos en esa competición 

por su premio de un millón de dólares, el vehículo qué más lejos llegó solo recorrió 11.78 

km y por lo tanto se consideró que la competición había sido un fracaso. A pesar de ello, 

el siguiente año se volvió a realizar y esta vez cinco vehículos lograron terminar la carrera 

ganando un total de tres millones y medio de dólares en premios. 

Durante el transcurso de los años y de las DARPA Grand Challenges, se ha ido 

investigando sobre el uso de algoritmos, RADAR, cámaras y LiDAR para lograr que los 

vehículos autónomos tuvieran una mejor percepción del entorno y así lograr detectar y 

evitar obstáculos. Además, gracias a la ley de Moore el poder computacional ha 

continuado aumentando y abaratándose dando pie a nuevos métodos como los algoritmos 

de deep learning para poder aplicarlos a la problemática de la conducción autónoma. 

Esta reducción de los costes y mejora del software y del hardware, ha dado pie a diferentes 

empresas a abordar esta problemática y a tratar de crear su propio vehículo autónomo. 

Como por ejemplo, Waymo, Tesla, General Motors, Apple, Uber, Mercedes-Benz, etc. 

A día de hoy, a pesar de que la carrera tecnológica por lograr el primer vehículo con 

autonomía total sigue en marcha, empresas como Tesla o Waymo llevan la delantera y 

actualmente tienen flotas de vehículos desplegados en las calles con capacidades muy 

cercanas a la autonomía total. 
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1.2 ESTADO DEL ARTE EN LA DETECCIÓN DE 

CARRILES 

Hoy en día, los coches totalmente autónomos son el principal foco de atención de la 

investigación en la informática y la robótica, tanto a nivel académico como industrial. El 

objetivo de estas investigaciones es llegar a una comprensión plena del entorno que rodea 

al automóvil mediante el uso de diferentes sensores y módulos de percepción. La 

detección de carriles basada en cámaras es un paso importante para lograr esta percepción 

total del entorno, ya que  permite al automóvil posicionarse adecuadamente dentro de los 

carriles de la carretera. Además, la detección de los carriles de la carretera también es 

crucial para una decisión posterior de salida del carril o de planificación de trayectoria. 

Un factor clave para lograr coches totalmente autónomos es realizar una detección de 

carril precisa basada en cámaras en tiempo real y para esto se ha hecho muchísima 

investigación y se han logrado grandes avances. Las primeras aproximaciones para 

solucionar esta problemática, fueron los métodos tradicionales de detección de carril 

como [4], [5], [6], [7], [8] y [9]. Estos métodos tradicionales son una combinación de 

características artesanales y heurísticas altamente especializadas para identificar los 

segmentos de los carriles. Unas de las elecciones más populares entre los métodos 

artesanales son las características basadas en colores [10], el tensor de estructura [11], el 

filtro de barra [12] y las características de cresta [13], que normalmente se combinan con 

una transformada de Hough [14], [15] y filtros de partículas Kalman [16], [17], [12].  

Después de identificar los segmentos del carril, se emplean técnicas de post-

procesamiento para filtrar las detecciones erróneas y agrupar los segmentos para formar 

las líneas finales. Sin embargo, por lo general, estos enfoques tradicionales son propensos 

a problemas de robustez debido a las variaciones de la escena de la carretera que no 

pueden ser modeladas fácilmente por esos sistemas basados en reglas. 

En los últimos años, los detectores artesanales han sido reemplazados por redes 

neuronales profundas. Estas redes hacen segmentaciones de los carriles a nivel de píxel. 

En [18] se utiliza un descriptor de características de jerarquía de píxeles para modelar la 

información contextual y un algoritmo de boosting para seleccionar características 

contextuales relevantes para la detección de marcas de carril. De una manera similar, en 

[19] se combina una red neuronal convolucional (CNN) con el algoritmo RANSAC para 

detectar carriles a partir de imágenes de bordes. Se ha de mencionar, que en este último 

método, la CNN se utiliza principalmente para mejorar la imagen y sólo si la escena de 

la carretera es compleja, por ejemplo, incluye árboles en los bordes de la carretera, vallas 

o intersecciones. En [20] se muestra como los modelos de CNN existentes pueden 

utilizarse para aplicaciones de conducción en autopistas, entre las que se encuentra una 

red neuronal convolucional de extremo a extremo que realiza la detección y clasificación 

de carriles. En [21] se introduce la Dual-View CNN (DVCNN) que utiliza una vista 

frontal y una vista superior de imágenes simultáneamente para excluir las detecciones 
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falsas y eliminar las estructuras sin forma de línea. En [22] se propone el uso de una red 

convolucional profunda multitarea que se centra en encontrar atributos geométricos de 

los carriles, como la ubicación y la orientación, junto con una red neuronal recurrente 

(RNN) que detecta los carriles. Más recientemente, en [23] se muestra cómo una red 

multitarea puede manejar conjuntamente la detección y el reconocimiento de carriles y 

marcas viales en condiciones de clima adverso y de poca iluminación. Además de la 

capacidad de las redes mencionadas de segmentar mejor las marcas de la carretera [20], 

su gran campo receptivo les permite también estimar los carriles incluso en los casos en 

que no hay marcas en la imagen. Sin embargo, en una etapa final, las segmentaciones de 

carril generadas todavía tienen que ser desenmarañadas en las diferentes instancias del 

carril. Para hacer frente a este problema, algunos enfoques han aplicado técnicas de post-

procesamiento que se basan de nuevo en la heurística, generalmente guiada por las 

propiedades geométricas, como se hace en [19], [25] por ejemplo. Como se ha explicado 

anteriormente, estos métodos heurísticos son costosos desde el punto de vista 

computacional y propensos a problemas de robustez debido a las variaciones de la escena 

de la carretera. Otra línea de trabajo [26] plantea el problema de la detección de carriles 

como un problema de segmentación de clases múltiples, en el que cada carril forma su 

propia clase. De esta manera, la salida de la red contiene mapas binarios desenmarañados 

para cada carril y puede ser entrenada de una manera de extremo a extremo. A pesar de 

sus ventajas, este método se limita a detectar sólo un número predefinido y fijo de carriles. 

Además, como cada carril tiene una clase designada, no puede hacer frente a los cambios 

de carril. 

En el paper Towards End-to-End Lane Detection: an Instance Segmentation Approach 

[1], que es en el que se va a basar este proyecto de fin de master, tratan de ir más allá de 

las limitaciones mencionadas y se propone plantear el problema de la detección de carriles 

como un problema de instance segmentation, en el que cada carril forma su propia 

instancia dentro de la clase de carril.  Inspirado por el éxito de las redes de segmentación 

semántica [26],[27], [28], [29] y las tareas de segmentación de instancias [30], [31],[32], 

[33], [34], [35], se diseña una red ramificada y multitarea, como [27] para la segmentación 

de instancias de carril, que consiste en una rama de segmentación de carril y una rama de 

embedding de carril que puede ser entrenada de extremo a extremo. La rama de 

segmentación de carril tiene dos clases de salida, fondo o carril, mientras que la rama de 

embedding de carril desenreda aún más los píxeles de carril segmentados en diferentes 

instancias de carril.  Al dividir el problema de detección de carriles en las dos tareas 

mencionadas, podemos utilizar plenamente la potencia de la rama de segmentación de 

carriles sin tener que asignar diferentes clases a los diferentes carriles. En cambio, la rama 

de embedding de carriles, que se entrena utilizando una función de pérdida de clustering, 

asigna una identificación de carril a cada píxel de la rama de segmentación de carriles, 

ignorando los píxeles de fondo. Al hacerlo, se alivia el problema de los cambios de carril 

y se puede manejar un número variable de carriles, a diferencia de [24].
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2. ¿QUÉ ES EL COMPUTER VISION? 

El computer vision o visión artificial en español, es un campo de estudio dentro de la 

inteligencia artificial que busca el desarrollo de técnicas para ayudar a los ordenadores a 

“ver” y comprender el contenido digital de imágenes y videos [36]. 

El problema de la visión por ordenador parece sencillo porque las personas lo resolvemos 

de una manera trivial. No obstante, sigue siendo en gran medida un problema sin resolver 

debido a nuestra limitada comprensión de la visión biológica y a la complejidad de la 

percepción en un mundo físico tan dinámico como el nuestro [36]. 

El algoritmo más utilizado para las aplicaciones que hacen uso de visión artificial, son las 

redes neuronales convolucionales o CNNs. Estos algoritmos de deep learning han sido 

utilizados para el reconocimiento de imágenes desde finales de la década de los 80 y 

surgieron a partir de un estudio del cortex visual del cerebro humano. [37] 

2.1 REDES NEURONALES CONVOLUCIONALES 

Las redes neuronales convolucionales o CNNs son un tipo de modelo de red neuronal que 

permite extraer representaciones de mayores dimensiones de una imagen. A diferencia de 

los métodos clásicos de reconocimiento de imágenes, en los que un programador debe de 

indicar todas las reglas de manera manual, las CNNs toman los pixeles de una imagen, 

entrenan un modelo y extraen características o patrones de la imagen logrando una mejor 

clasificación [38]. Además, la propia arquitectura de las CNNs, a diferencia de las redes 

neuronales clásicas, permite detectar patrones en las imágenes independientemente de su 

localización en las mismas. Es decir, el modelo detectará el patrón de las orejas de un 

gato independientemente de su posición en la imagen. 

2.1.1 CAPA DE CONVOLUCIÓN 

El bloque de construcción más importante de una red neuronal convolucional es la capa 

de convolución o convolutional layer en inglés. Estas capas se basan en una operación 

matemática llamada convolución: 
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Ilustración 1: Operación de convolución 

Fuente: https://github.com/PetarV-/TikZ/tree/master/2D%20Convolution 

Autor: Petar Veličković 

 

Como podemos observar en la ilustración 1, en una convolución una ventana barre la 

imagen inicial aplicándole un filtro. Con este filtro se calcula el producto lo que hace 

que se resalten las características más relevantes de la imagen [38]. La operación 

resaltada en color de la ilustración 1 la podemos definir así, donde * indica una 

convolución: 

 

[
𝐼14 𝐼15 𝐼16
𝐼24 𝐼25 𝐼26
𝐼34 𝐼35 𝐼36

] ∗  [
𝐾11 𝐾12 𝐾13
𝐾21 𝐾22 𝐾23
𝐾31 𝐾32 𝐾33

] = 𝐼14 × 𝐾11 + 𝐼15 × 𝐾12 + 𝐼16 × 𝐾13 +

𝐼24 × 𝐾21 + 𝐼25 × 𝐾22 + 𝐼26 × 𝐾23 + 𝐼34 × 𝐾31 + 𝐼35 × 𝐾32 + 𝐼36 × 𝐾33 

 

     [
1 0 0
1 1 0
1 1 1

] ∗ [
1 0 1
0 1 0
1 0 1

] = 1 × 1 +  0 × 0 +  0 × 1 +  1 × 0 +  1 × 1 +  0 + 0 +

 1 × 1 +  1 × 0 +  1 × 1 = 4 

 

Con esta operación matemática, se puede detectar una característica o patrón concreto 

en una imagen y producir mapas de características los cuales enfatizan las 

características o patrones más importantes. Estos mapas de características siempre irán 

cambiando dependiendo de los filtros o kernels que cambiarán automáticamente acorde 

al descenso del gradiente para minimizar la función de pérdida de la predicción [38]. 

 

https://github.com/PetarV-/TikZ/tree/master/2D%20Convolution
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El potencial de este tipo de redes reside en su procesamiento en cascada. Es decir, 

cuantos más filtros se utilicen, más características extraerá la CNN permitiendo así que 

se encuentren más características pero con un costo mayor en el tiempo de 

entrenamiento [38]: 

 

 

Ilustración 2: Mapas de características de CNN entrenada sobre ImageNet 

Fuente: https://arxiv.org/pdf/1311.2901.pdf  

Autor: Matthew D. Zeiler & Rob Fergus 

 

Pero, ¿Qué sucede cuando la imagen no tiene los suficientes bloques adyacentes para 

deslizar el filtro sobre ella? ¿Deberían de ser eliminados estos bloques? 

Cuando los bloques adyacentes son insuficientes para ajustar el filtro, normalmente no 

se eliminan porque se pierde información del input. Para estos casos se insertan 0s 

añadiendo así los bloques adyacentes que necesitemos [38]. Este proceso se llama 

padding. 

2.1.2 CAPA DE POOLING 

Las CNNs utilizan el pooling para reemplazar la salida de una convolución con una 

simplificación de los datos. Esto reduce el tamaño del input y el tiempo de procesamiento 

[38]. 

Estas operaciones reciben dos hiperparametros o hyperparameters en inglés: stride y 

tamaño. 

El stride determina cuantos elementos debe saltarse la ventana al barrer las matrices 

mientras que el tamaño determina el tamaño de la ventana [38]. 

Existen varios tipos de pooling, como por ejemplo: 

https://arxiv.org/pdf/1311.2901.pdf
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• Max pooling. Se queda con el elemento más grande de la ventana. 

• Min pooling. Se queda con el elemento más pequeño de la ventana. 

• Average pooling. Se queda con la media de todos los elementos de la ventana. 

 

 

Ilustración 3: Operación de max pooling 

Fuente: https://cs231n.github.io/convolutional-networks/ 

Autor: Stanford University 

 

La operación max pooling de la ilustración 3 se podría definir de la siguiente manera: 

 

max _𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝑓𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒, 𝑖𝑛𝑝𝑢𝑡) = 

max_𝑝𝑜𝑜𝑙𝑖𝑛𝑔 (2𝑥2, 2, [

𝐼𝑛𝑝𝑢𝑡11 𝐼𝑛𝑝𝑢𝑡12 𝐼𝑛𝑝𝑢𝑡13 𝐼𝑛𝑝𝑢𝑡14
𝐼𝑛𝑝𝑢𝑡21 𝐼𝑛𝑝𝑢𝑡22 𝐼𝑛𝑝𝑢𝑡23 𝐼𝑛𝑝𝑢𝑡24
𝐼𝑛𝑝𝑢𝑡31 𝐼𝑛𝑝𝑢𝑡32 𝐼𝑛𝑝𝑢𝑡33 𝐼𝑛𝑝𝑢𝑡34
𝐼𝑛𝑝𝑢𝑡41 𝐼𝑛𝑝𝑢𝑡42 𝐼𝑛𝑝𝑢𝑡43 𝐼𝑛𝑝𝑢𝑡44

])  = 

[
max {𝐼𝑛𝑝𝑢𝑡11, 𝐼𝑛𝑝𝑢𝑡12, 𝐼𝑛𝑝𝑢𝑡21, 𝐼𝑛𝑝𝑢𝑡22} max {𝐼𝑛𝑝𝑢𝑡13, 𝐼𝑛𝑝𝑢𝑡14, 𝐼𝑛𝑝𝑢𝑡23, 𝐼𝑛𝑝𝑢𝑡24} 
max {𝐼𝑛𝑝𝑢𝑡31, 𝐼𝑛𝑝𝑢𝑡32, 𝐼𝑛𝑝𝑢𝑡41, 𝐼𝑛𝑝𝑢𝑡42} max {𝐼𝑛𝑝𝑢𝑡33, 𝐼𝑛𝑝𝑢𝑡34, 𝐼𝑛𝑝𝑢𝑡43, 𝐼𝑛𝑝𝑢𝑡44} 

] 

 

 

max _𝑝𝑜𝑜𝑙𝑖𝑛𝑔(2𝑥2, 2, [

1 1 2 4
5 6 7 8
3 2 1 0
1 2 3 4

] ) = 

[
max{1,1,5,6} max{2,4,7,8}

max{3,2,1,2} max{1,0,3,4}
] = 

[
6 8
3 4

] 

https://cs231n.github.io/convolutional-networks/


TRABAJO FIN DE MÁSTER 

 19 

2.1.3 FUNCIONES DE ACTIVACIÓN 

Otro elemento fundamental para el correcto funcionamiento de cualquier red neuronal 

son las funciones de activación. Estas funciones de activación determinan si una neurona 

debe activarse o no [39]. Para saber si una neurona debe activarse, una neurona ha de 

calcular una weighted sum o suma balanceada sumándole un sesgo o bias y después 

pasarle el resultado a una función de activación: 

𝑍 =  ∑(𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑖𝑛𝑝𝑢𝑡) + 𝑏𝑖𝑎𝑠 

𝐴 = 𝜎(𝑍) 

2.1.3.1 SIGMOIDE 

𝜎(𝑍) =
1

1 + 𝑒−𝑧
 

 

Ilustración 4: Función de activación sigmoide 

Fuente: https://towardsdatascience.com/what-is-activation-function-1464a629cdca 

 

• Ventajas 

o Funciona bien en problemas de clasificación binaria porque convierte 

todos los valores en el rango (−∞,∞) a valores en el rango (0,1) [39]. 

• Desventajas 

o No funciona en problemas de clasificación de multiples etiquetas 

(multilabel classification) [40]. 

o La derivada para el cálculo del gradiente siempre es 0, por lo que es 

imposible actualizar los pesos [40]. 

https://towardsdatascience.com/what-is-activation-function-1464a629cdca
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2.1.3.2 TANH 

La función de activación tanh es similar a la sigmoide. Sin embargo, la tanh es simétrica 

en 0, convierte todos los valores en el rango (−∞,∞) a valores en el rango (−1,1) y las 

derivadas son más pronunciadas por lo que entrena más rápidamente. Por este motivo, la 

función tanh suele ser mejor utilizarla en capas intermedias pero dado que es una función 

computacionalmente bastante costosa y suele generar problemas con el desvanecimiento 

del gradiente, se suele utilizar la función ReLU en su lugar [40]. 

𝜎(𝑍) =  
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
 

 

Ilustración 5: Función de activación tanh 

Fuente: https://towardsdatascience.com/what-is-activation-function-1464a629cdca 

 

• Ventajas 

o Funciona bien en capas intermedias por su simetría en el valor 0 y 

porque convierte todos los valores en el rango (−∞,∞) a valores en el 

rango (−1,1) [40]. 

o El gradiente es más pronunciado que en la función sigmoide porque las 

derivadas son más pronunciadas [40]. 

• Desventajas 

o Al igual que la función sigmoide, la función de activación tanh sigue 

teniendo el problema de desvanecimiento del gradiente [40]. 

https://towardsdatascience.com/what-is-activation-function-1464a629cdca
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2.1.3.3 RELU 

𝜎(𝑍) = {
𝑍, 𝑍 > 0

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Ilustración 6: Función de activación ReLU 

Fuente: https://towardsdatascience.com/what-is-activation-function-1464a629cdca  

 

• Ventajas 

o Es fácil de implementar y muy ligero computacionalmente [40]. 

o La optimización es fácil cuando la función de activación es lineal [40]. 

o Es la función de activación más utilizada en las redes neuronales [40]. 

• Desventajas 

o Mayor facilidad de que la salida de las neuronas sea 0. Si la salida es 0, 

no hay gradiente y las neuronas no están activadas, por lo tanto, esto 

puede generar un deficiente rendimiento del modelo [40]. 

o No es adecuada para las redes neuronales recurrentes o RNNs [40]. 

 

 

 

https://towardsdatascience.com/what-is-activation-function-1464a629cdca
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2.1.3.4 SOFTMAX 

La función activación softmax es diferente a las demás. Esta función de activación computa una 

distribución de probabilidades por lo que se suele utilizar en la última capa de las redes 

neuronales cuando queremos predecir múltiples clases [40]. 

 

 

Ilustración 7: Ejemplo de funcionamiento de la función de activación softmax 

Fuente: https://towardsdatascience.com/softmax-activation-function-explained-a7e1bc3ad60 

Autor: Dario Radečić 

 

2.1.4 ARQUITECTURA COMPLETA DE UNA RED NEURONAL 

CONVOLUCIONAL 

 

Ilustración 8: Arquitectura completa de una red neuronal convolucional 

Fuente: https://towardsdatascience.com/understanding-cnn-convolutional-neural-network-69fd626ee7d4 

Una vez entendidos todos los conceptos básicos que forman una red neuronal 

convolucional, podemos observar una arquitectura completa en la ilustración 8. Esta red 

está compuesta de dos capas convolucionales seguidas de sus capas de pooling y 

finalmente podemos ver como una capa fully connected reduce la dimensionalidad de 

todos los mapas de características generados por los procesos convolutivos a un vector 

unidimensional. Este vector, contiene todas las características o patrones más relevantes 

https://towardsdatascience.com/softmax-activation-function-explained-a7e1bc3ad60
https://medium.com/@radecicdario/about
https://medium.com/@radecicdario/about
https://towardsdatascience.com/understanding-cnn-convolutional-neural-network-69fd626ee7d4
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de la imagen y si a este le aplicamos la función de activación softmax, nos devolverá una 

distribución de probabilidades. Para comprender mejor esta última fase en la que se hace 

la predicción, voy a inventarme unos valores para explicar este proceso de una manera 

más intuitiva: 

𝐶𝑙𝑎𝑠𝑒𝑠 =  {Dinosaurio, 𝑃𝑒𝑟𝑟𝑜, 𝐺𝑎𝑡𝑜, 𝑅𝑜𝑏𝑜𝑡, 𝑃𝑎𝑡𝑜, 𝑂𝑠𝑜} 

𝑉𝑒𝑐𝑡𝑜𝑟 𝑢𝑛𝑖𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑑𝑒 𝑙𝑎 𝑐𝑎𝑝𝑎 𝑓𝑢𝑙𝑙𝑦 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 = [1.4, 8.9, −11.1, 2.1, 3.0, 27.1] 

𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑐𝑖ó𝑛 𝑑𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑑𝑎𝑑𝑒𝑠 𝑑𝑒𝑠𝑝𝑢é𝑠 𝑑𝑒𝑙 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 = [0.01, 0.02, 0.01 , 0.8, 0.06, 0.1] 

𝐶𝑜𝑛𝑓𝑖𝑎𝑛𝑧𝑎 𝑒𝑛 𝑙𝑎𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑐𝑖𝑜𝑛𝑒𝑠:

{
 
 

 
 
𝐶𝑜𝑛𝑓𝑖𝑎𝑛𝑧𝑎 𝑐𝑙𝑎𝑠𝑒 𝐷𝑖𝑛𝑜𝑠𝑎𝑢𝑟𝑖𝑜: 1%

𝐶𝑜𝑛𝑓𝑖𝑎𝑛𝑧𝑎 𝑐𝑙𝑎𝑠𝑒 𝑃𝑒𝑟𝑟𝑜: 2%
𝐶𝑜𝑛𝑓𝑖𝑎𝑛𝑧𝑎 𝑐𝑙𝑎𝑠𝑒 𝐺𝑎𝑡𝑜: 1%
𝐶𝑜𝑛𝑓𝑖𝑎𝑛𝑧𝑎 𝑐𝑙𝑎𝑠𝑒 𝑅𝑜𝑏𝑜𝑡: 80%
𝐶𝑜𝑛𝑓𝑖𝑎𝑛𝑧𝑎 𝑐𝑙𝑎𝑠𝑒 𝑃𝑎𝑡𝑜: 6%
𝐶𝑜𝑛𝑓𝑖𝑎𝑛𝑧𝑎 𝑐𝑙𝑎𝑠𝑒 𝑂𝑠𝑜: 10%

 

 

Según estos datos, esta red neuronal convolucional predeciría con un 80% de confianza 

que el input es un Robot
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TRABAJO FIN DE MÁSTER 

 25 

3. DEFINICIÓN DEL PROYECTO 

3.1 OBJETIVOS 

Para lograr un proyecto satisfactorio, se han planteado varios objetivos: 

• Lograr un modelo basado en el paper de LaneNet [1] con unos resultados 

similares. 

• Aportar una implementación en la API de alto nivel de Tensorflow, Keras. En la 

actualidad, no existe ningún repositorio disponible en internet con una 

implementación con esta API. 

• Una vez finalizada la implementación del modelo, testearla usando benchmarks 

de referencia en el área. 

3.2 ALCANCE 

• Leer y comprender el paper de LaneNet [1] para poder hacer una implementación 

desde 0 y ajustar los hiperparámetros para lograr los mejores resultados posibles. 

• Implementar el modelo completo utilizando Keras en todos los apartados en los 

que sea posible. 

• Analizar el rendimiento del modelo mediante métricas y datasets de referencia en 

el área. 

3.3 INNOVACIONES TECNOLÓGICAS 

Como innovación tecnológica se propone crear una implementación de LaneNet en la 

API de alto nivel de Tensorflow, Keras. Esto es una innovación porque actualmente no 

existe ningún repositorio en internet que tenga una implementación con esta API. 

Este modelo basado en el deep learning, es muy relevante en el campo de la conducción 

autónoma pero también para diferentes áreas en los que la detección de líneas sea 

relevante como por ejemplo en la detección de líneas de carril en los aeropuertos, 

aparcamientos, etc. La facilidad de este modelo para generalizar a partir de imágenes de 

entrenamiento lo convierte en una elección interesante para todas estas áreas en lugar de 

confiar en métodos heurísticos que no son capaces de generalizar ni son tan robustos 

como LaneNet.
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4. DESCRIPCIÓN DEL PROYECTO 

El proyecto se basa en crear una implementación del modelo LaneNet mencionado por 

primera vez en el paper del 2018 Towards End-to-End Lane Detection: an Instance 

Segmentation Approach [1]. Como no existe ninguna implementación en Keras, la API 

de alto nivel de Tensorflow, LaneNet se implementará con este framework. 

4.1 LANENET 

LaneNet es una arquitectura que logra resultados del estado del arte en la detección de 

carriles con una precisión del 96.4% y un F1 score de 94.80 en el dataset TuSimple. Estas 

métricas sitúan a LaneNet en la posición 6 y 13 respectivamente del ranking global sin 

apenas diferencia alguna con los valores del modelo que lidera el ranking en el benchmark 

TuSimple. [41] 

 

Ilustración 9: Arquitectura LaneNet 

Fuente: https://arxiv.org/pdf/1802.05591.pdf 

Autor: Davy Neven, Bert De Brabandere, Stamatios Georgoulis, Marc Proesmans & Luc Van Gool 

 

En la ilustración 9, se puede ver la arquitectura de LaneNet. Está compuesta de dos 

ramas. La rama de segmentación (rama inferior) está entrenada para producir una 

máscara de carril binario y la rama de embedding (rama superior) genera un embedding 

N-dimensional por cada píxel de carril, de modo que los embeddings del mismo carril 

están cerca y las de diferentes carriles están lejos. 

Para simplificar, se muestra un embedding bidimensional por píxel. Todos los píxeles se 

visualizan en un mapa de color en los ejes X e Y. Dentro de estos píxeles se diferencian 

los que pertenecen a un carril y los que no. Después de enmascarar los píxeles de fondo 

usando el mapa de segmentación binario de la rama de segmentación, los embeddings 

de carril (puntos azules) se clusterizan y se asignan a sus centros de cluster (puntos 

rojos). 

https://arxiv.org/pdf/1802.05591.pdf
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4.1.1 BINARY SEGMENTATION 

La rama de segmentación binaria, se basa en la arquitectura de E-Net [43]. Esta 

arquitectura basada en los principios encode-decode, es rápida y compacta, por lo que 

permite realizar la segmentación semántica en tiempo real. Como se ha dicho 

previamente, la detección en tiempo real es fundamental para lograr un vehículo de 

conducción autónoma dado que unos pocos milisegundos de retardo en una predicción 

pueden suponer el éxito o el fracaso de estos vehículos. 

 

Ilustración 10: Input y output óptimo de la rama de segmentación binaria de LaneNet 

En la ilustración 10, se pueden observar tanto las imágenes originales de input de 

LaneNet, como el output óptimo de la rama de segmentación binaria. En este contexto, 

óptimo se refiere a que son imágenes anotadas a mano, también conocido como ground 

truth. 

Esta rama de LaneNet, tendrá como objetivo predecir las líneas de los carriles 

devolviendo una máscara binaria a partir de imágenes de carreteras reales. 

 

4.1.2 EMBEDDING 

La rama de embedding, también se basa en la arquitectura E-Net pero a diferencia de la 

rama de segmentación binaria, esta rama es entrenada para crear una representación N-

dimensional. En el paper [1] utilizan 4 dimensiones o canales por lo que el output en este 
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caso es una representación de la misma altura y anchura que la imagen original pero con 

4 canales de color. 

Esta representación de mayores dimensiones facilita utilizar el clustering para la posterior 

segmentación de instancias. 

 

Ilustración 11: Ejemplo de embedding 

Este es un ejemplo de lo que podemos esperar de un embedding. En esta ilustración se 

puede observar cómo hay valores diferentes en las zonas en las que se encuentran las 

líneas de carril. Estos diferentes valores facilitarán hacer un clustering una vez aplicada 

la máscara binaria sobre el embedding. 

  

4.1.3 INSTANCE SEGMENTATION 

En esta última parte, se tiene que identificar cada línea del carril añadiéndole un 

identificador o color diferente a cada una de las líneas. Para lograr esto, se hace uso de la 

máscara binaria, el embedding y algo de post-procesamiento junto con algunos algoritmos 

de clustering. 

Este proceso debería de permitir lograr unos resultados parecidos a los que podemos ver 

en esta ilustración: 
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Ilustración 12: Ejemplo output final LaneNet 

Fuente: https://github.com/MaybeShewill-CV/lanenet-lane-detection  

Autor: MaybeShewill-CV 

En la ilustración 12, podemos ver un ejemplo de lo que podemos esperar como output 

final de LaneNet. La máscara final de instance segmentation se superpondrá a la imagen 

de la carretera y se podrán reconocer las diferentes líneas del carril con diferentes colores. 

4.2 DISEÑO EXPERIMENTAL 

Este proyecto es puramente experimental y busca lograr resultados similares a los del 

paper original [1]. Por ello, se ha decidido utilizar el mismo benchmark propuesto en [1], 

el TuSimple dataset. 

Además, la naturaleza experimental de este proyecto hace que tenga sentido desarrollarlo 

en un entorno en la nube como Google Colaboratory. 

4.2.1 TUSIMPLE DATASET 

El dataset TuSimple [42], es uno de los varios benchmarks que existen para el 

entrenamiento de algoritmos de inteligencia artificial con capacidades de conducción 

autónoma. Este dataset en concreto contiene datos para la detección de carriles y para la 

estimación de velocidad. 

Me centraré en el dataset de detección de carriles dado que es el que he utilizado para 

este trabajo: 

4.2.1.1 CARACTERÍSTICAS 

• Complejidad 

o Condiciones climáticas buenas y medias 

o Diferentes horas del día 

o Autopistas de 2, 3 y 4 carriles 

o Diferentes condiciones de tráfico 

https://github.com/MaybeShewill-CV/lanenet-lane-detection
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• Tamaño 

o Los datos de entrenamiento contienen 3626 clips de video de 20 frames 

cada uno pero solamente hay un frame anotado por cada clip. Es decir, 

existen 3626 frames anotados. 

o Los datos de testeo contienen 2782 clips de video de 20 frames cada uno 

pero al igual que en los datos de entrenamiento, solamente hay un frame 

anotado por cada clip. Es decir, existen 2782 frames anotados. 

o Los frames tienen un tamaño de 1280 pixeles de ancho × 720 pixeles de 

alto. 

• Tipo de anotaciones 

o Las anotaciones son coordenadas que marcan los carriles. 

4.2.1.2 DETALLES DE ESTRUCTURA Y FORMATO 

El dataset TuSimple no viene con los carriles dibujados por defecto y para poder entrenar 

al modelo, hay que preprocesar todos estos datos. Antes de este preprocesamiento 

debemos entender la estructura y el formato en el que se guardan los datos para poder 

manipularlos: 

Dentro del directorio principal del dataset, existe un directorio con las muestras de 

entrenamiento y otro con las muestras de testeo. La estructura de ambos directorios es la 

siguiente: 

• Clips/. Este directorio contiene todos los clips de video 

o Clip_1/. Este directorio contiene todos los frames que forman el primer 

clip de video. 

▪ 1.jpg. Este es el primer frame del clip de video. 

▪ … 

▪ 20.jpg. Este es el último frame del clip de video. 

o … 

o Clip_n/. Este directorio contiene todos los frames que forman el último 

clip de video. 

▪ 1.jpg. Este es el primer frame del clip de video. 

▪ … 

▪ 20.jpg. Este es el último frame del clip de video. 

• Label_data_(fecha).json. Este fichero en formato JSON contiene toda la 

información de las anotaciones de los frames. Este es el fichero que nos otorga la 

información necesaria para poder dibujar los carriles. 

 

Una vez conocida la estructura de directorios, vamos a analizar la estructura y el formato 

del fichero .json que contiene la información con las anotaciones: 
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{ 

  ‘lanes’: Lista que contiene la anchura a la que están las coordenadas de los carriles 

  ‘h_sample’: Lista que contiene la altura a la que están las coordenadas de los carriles 

  ‘raw_file’: String que contiene el path del frame número 20 del clip de video. 

 } 

 

Como máximo habrá 5 marcas de carril. Se esperan 4 marcas de carril (carril actual y 

carril izquierdo/derecho) pero puede aparecer un carril adicional que se utilizará cuando 

se cambia de carril. De esta manera, no habrá confusión para saber cual es el carril actual. 

 

Todas las marcas de los carriles tienen las mismas alturas (estas alturas están registradas 

en el campo ‘h_sample’). Esto significa que se puede emparejar cada elemento de un 

carril con los elementos del campo ‘h_sample’ para obtener la coordenada de la marca 

del carril en las imágenes. 

 

Además, los carriles están alrededor del centro de la vista, lo que anima al vehículo de 

conducción autónoma a centrarse en el carril actual y en los carriles izquierdo/derecho. 

Estos carriles son esenciales para el control del coche. 

 

4.2.1.3 PREPROCESADO 

Una vez comprendida la estructura de los directorios del dataset TuSimple y la estructura 

y el formato de las anotaciones, es hora de hablar del preprocesado.  

Para poder llevar a cabo el modelo de LaneNet, se necesita preprocesar las imágenes de 

una manera específica: hay que redimensionar las imágenes originales a 256 pixeles de 

altura × 512 píxeles de anchura, crear una máscara binaria en el que las líneas se marquen 

con 1s y todas las demás partes de la imagen se marquen con 0s y crear una máscara de 

instance segmentation en las que cada línea del carril tenga un  identificador diferente (se 

identificará utilizando colores diferentes para cada línea). 

Sin embargo, si simplemente dibujamos las marcas de nuestro archivo .json, lo que 

conseguiremos es esto: 
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Ilustración 13: Ejemplos de imágenes del dataset TuSimple sin preprocesar 

Fuente: https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection 

Autor: http://www.tusimple.ai 

Como se puede ver en la ilustración 13, si solamente marcamos las imágenes con las 

coordenadas del archivo .json, solo conseguiremos algunos puntos sobre cada una de las 

líneas de la calzada, como se puede apreciar en verde. Estas imágenes preprocesadas no 

le serán útiles a LaneNet dado que busca otro tipo de preprocesado en sus imágenes 

para poder ser entrenada y testeada: 

 

Ilustración 14: Input, máscaras binarias y máscaras de instancias 

https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection
http://www.tusimple.ai/
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Sin embargo, como podemos observar en la ilustración 14, una vez obtenidas las 

coordenadas podemos ajustar una función polinómica de segundo grado sobre las 

coordenadas. Gracias a este método, las coordenadas pasan de ser únicamente unos 

pocos puntos distribuidos en las líneas de los carriles, a marcar todas las líneas de los 

carriles.  

Si prestamos atención a la ilustración 14, podemos observar las imágenes originales 

redimensionadas a 256 píxeles de altura × 512 píxeles de anchura en la izquierda de la 

ilustración. En la columna central, podemos ver tres máscaras binarias creadas 

ajustando un polinomio de segundo grado a las coordenadas del archivo .json. 

Finalmente, en la derecha del todo, podemos observar cada uno de los carriles 

identificados con diferentes colores, también conocido como instance segmentation. 

Estas últimas imágenes con colores en cada línea de carril son las imágenes que 

queremos predecir a partir de las imágenes originales. Es decir, el input de nuestro 

modelo serán imágenes a color y el output será la instance segmentation de las líneas de 

los carriles. 

 

4.2.2 GOOGLE COLABORATORY 

Dado que no es un proyecto pensado para poner en producción, los notebooks de Google 

Colaboratory han sido la principal herramienta que se ha utilizado para desarrollar este 

proyecto. En un principio, se ha utilizado la versión gratuita, pero entrenar un modelo del 

calibre de LaneNet ha requerido de una mayor cantidad de memoria RAM y de 

computación en GPU. Por ello, también se ha utilizado la versión de pago Google 

Colaboratory Pro. 

 

 

Ilustración 15: Interfaz de Google Colaboratory
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5. DESARROLLO DEL PROYECTO 

5.1 METODOLOGÍA REALIZADA 

Debido a la magnitud y complejidad de LaneNet, se ha realizado el proyecto de manera 

incremental abordando las diferentes partes del proyecto en un orden secuencial 

empezando por la rama de segmentación binaria, siguiendo con la rama de embedding y 

finalizando con el post-procesado para lograr una correcta segmentación de instancias de 

los carriles. 

5.1.1 E-NET 

Como se ha comentado en el apartado 4, el modelo LaneNet hace uso de la arquitectura 

E-Net [43]. Este modelo es un autoencoder, por lo que su arquitectura de encode-decode 

es muy compacta y rápida a la hora de hacer inferencias. En el dominio de la percepción 

de los vehículos autónomos la velocidad de inferencia es de gran importancia y este 

motivo, junto con que es uno de los modelos liderando el estado del arte en la 

segmentación semántica en tiempo real han tenido un gran peso en su elección. Por ello, 

E-Net ha sido utilizado como backbone dentro de LaneNet. 

Siguiendo el paper de LaneNet [1], la arquitectura de E-Net ha sido modificada para 

recibir un input de 256 de alto × 512 de ancho a diferencia del input que recibe en el paper 

original [43] de 512 de alto × 512 de ancho.
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Ilustración 16: Arquitectura E-Net en el paper original 

Autor: Abhishek Chaurasia, Sangpil Kim & Eugenio Culurciello 

Fuente: 1606.02147v1.pdf (arxiv.org) 

 

 

En la ilustración 16, se puede ver la arquitectura completa del paper original de E-Net 

[43]. Esta arquitectura está dividida en varias fases y se pueden distinguir mediante las 

líneas horizontales y el primer dígito después del nombre de cada bloque. A pesar de que 

en esta ilustración vemos que el output es de una dimensión de 512×512×el número de 

canales, LaneNet tiene dos ramas en las que tiene outputs de 256×512×1 para la rama de 

la máscara binaria y 256 × 512 × 4 para la rama del embedding. Por esta razón, puede que 

algunos de los valores intermedios de la tabla tampoco se ajusten al backbone final 

utilizado en LaneNet. 

Hay dos bloques de construcción principales en E-Net en los que se construye toda la red. 

El denominado bloque inicial y el bottleneck module o módulo de cuello de botella en 

español: 

https://arxiv.org/pdf/1606.02147v1.pdf
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Ilustración 17: Bloques de construcción de E-Net 

Autor: Abhishek Chaurasia, Sangpil Kim & Eugenio Culurciello 

Fuente: 1606.02147v1.pdf (arxiv.org) 

 

En el bloque (a), podemos ver el denominado bloque inicial. Este bloque, hace una 

operación de max pooling y una convolución 2D de 13 filtros con un kernel de 3×3 

utilizando un stride de 2. Una vez hechas estas operaciones, los mapas de características 

resultantes se concatenan y suman un total de 16 mapas de características. 

 

En el bloque (b), podemos ver el denominado bottleneck module. Existen variaciones de 

este módulo a lo largo de toda la arquitectura E-Net y en estas, las convoluciones 2D 

pueden ser regulares, dilatadas o convoluciones totales también conocidas como 

deconvoluciones. Estas convoluciones pueden tener filtros con kernels de 3×3 o de 5×5 

descompuestas en 2 convoluciones asimétricas (una convolución de 5×1 y otra de 1×5). 

 

Todos los bottleneck modules consisten en convoluciones 1×1 para reducir la 

dimensionalidad, una convolución principal de 3×3 que puede ser regular, dilatada o 

total, una expansión de 1×1 y cada una de las convoluciones mencionadas cuentan con 

una capa de batch normalization y una función de activación PReLU entre ellas. 

Si el módulo está haciendo downsampling, se añade una capa de max pooling a la rama 

principal y la primera convolución 1×1 para reducir la dimensionalidad se reemplaza 

por una convolución 2×2 con un stride de 2. 

En lo que a la regularización respecta, se utilizan capas de spatial dropout de p=0.01 

antes del bottleneck module 2.0 y de p=0.1 después del bottleneck module 2.0. 

Si juntamos todo lo mencionado anteriormente, nos queda lo siguiente: 

1. El codificador o encoder en las fases 1, 2 y 3. Estas fases consisten en 5 bloques 

bottleneck con la excepción de que en la fase 3 no se hace downsample. 

https://arxiv.org/pdf/1606.02147v1.pdf
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2. El decodificador o decoder en las fases 4 y 5. La fase 4 tiene 3 bottleneck modules 

y la fase 5 tiene 2. 

3. Una vez implementadas estas 5 fases, E-Net se completa utilizando una capa 

fullconv también conocida como capa deconvolucional de las mismas 

dimensiones de ancho y de alto que el input pero con el mismo numero de canales 

a las clases que se quieren predecir. En nuestro caso el número de clases será 1 

por lo que nuestro output de E-Net previo a implementar las dos ramas restantes 

será de 256×512×1. 

Otras excepciones a tener en cuenta a la hora de implementar E-Net son las siguientes: 

• No utilizan el valor del bias en ninguna de las proyecciones. 

• Entre cada capa de convolución y función de activación se utiliza una capa de 

batch normalization. 

• En el decodificador, se reemplaza la capa de max pooling por la capa de max 

unpooling y el padding también es reemplazado por la regularización spatial 

convolution sin utilizar el valor de bias. 

• Se utiliza un learning rate de 5e-4. 

• Se utiliza un optimizador Adam. 

• Se utiliza un regularizador L2 a nivel de kernel de 2e-4 

5.1.2 BINARY SEGMENTATION 

Una vez comprendida la estructura y el backbone de LaneNet, procedo a explicar la rama 

de segmentación binaria: 

Como se ha explicado en el apartado 4.1.1, esta rama devuelve una máscara binaria 

identificando las líneas del carril. 

Para lograr que la red identifique las líneas de los carriles y no las pase por alto, es 

necesario crear una función de pérdida llamada weighted categorical crossentropy. Si 

nos fijamos en la ilustración 10, se puede observar que las líneas de los carriles y el 

background están claramente desbalanceados. Para ello, tenemos que dar mayor peso a 

los pixeles de los carriles consiguiendo así que el modelo se centre en predecir estas 

líneas. Para definir la función weighted categorical crossentropy primero es necesario 

invertir los pesos de los pixeles de los carriles y los pixeles del background y de esta 

manera forzar al modelo a dar mayor peso a los pixeles de los carriles. De la siguiente 

manera, se invertirían los pesos de una sola máscara binaria: 

 

𝑤 =
1

log ([
𝑝𝑖𝑥𝑒𝑙𝑠𝑙𝑎𝑛𝑒
𝑝𝑖𝑥𝑒𝑙𝑠𝑡𝑜𝑡𝑎𝑙

  
𝑝𝑖𝑥𝑒𝑙𝑠𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

𝑝𝑖𝑥𝑒𝑙𝑠𝑡𝑜𝑡𝑎𝑙
]+ 𝐶)

 = [𝑤𝑙𝑎𝑛𝑒 𝑤𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑] 

𝑝𝑖𝑥𝑒𝑙𝑠𝑙𝑎𝑛𝑒 equivale al número de pixeles de carriles que contiene la imagen binaria 
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𝑝𝑖𝑥𝑒𝑙𝑠𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 equivale al número de pixeles de background que contiene la imagen 

binaria 

𝐶 es una constante definida por el paper [1] con el valor 1.02 

𝑤𝑙𝑎𝑛𝑒 equivale al nuevo valor de los pesos de los carriles 

𝑤𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 equivale al nuevo valor de los pesos del background 

 

Una vez invertidos los pesos, podemos calcular la función weighted categorical 

crossentropy de la siguiente manera: 

 

𝑙𝑜𝑠𝑠 =  −∑𝑦𝑖 ∙ log(𝑦𝑖̂) ·  𝑊𝑖

𝑛

𝑖=1

 

 

𝑦𝑖 equivale al ground truth de la imagen binaria en la posición i-ésima convertida a one 

hot encoding 

 

𝑦𝑖̂ equivale a la distribución de probabilidades por píxel de la imagen binaria 

 

𝑊𝑖 equivale a los pesos invertidos del carril y el background de la imagen en la posición 

i-ésima 

𝑛 equivale al tamaño del batch 

5.1.3 EMBEDDING 

Otra de las ramificaciones es la rama del embedding. Esta rama, como se ha mencionado 

en el apartado 4.1.2, devuelve una representación N-dimensional del output de la máscara 

binaria. Este output N-dimensional junto con la máscara binaria de la otra ramificación, 

nos facilita utilizar un algoritmo de clustering para identificar con mayor facilidad cada 

línea del carril en el post-procesado para lograr una segmentación de instancias. 

Para lograr una separación entre cada línea del carril y poder clusterizar cada línea con 

facilidad, muchos de los métodos de segmentación más utilizados no son adecuados para 

la segmentación de líneas de carril porque están hechos para segmentar elementos más 

compactos y las líneas no lo son. Por ello, se utiliza un método de aprendizaje por métrica 

de distancia propuesto por DeBrabandere et al. [35]. 

Aplicando la discriminative loss function o función de pérdida discriminativa en español, 

la rama de embedding es entrenada para que la distancia entre los píxeles del embedding 

pertenecientes a la misma línea del carril sea pequeña y la distancia entre los píxeles del 

embedding de diferentes líneas del carril sea grande. Gracias a esto, los píxeles de la 

misma línea se clusterizarán juntos formando clusters únicos por cada línea del carril. 
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Esta función de pérdida genera una fuerza de empuje entre clusters para alejarlos lo 

máximo posible y una fuerza de tracción para acercar los diferentes píxeles a su cluster 

más cercano: 

 

Ilustración 18: Visualización del resultado al aplicar la discriminative loss function 

Fuente: https://arxiv.org/pdf/1708.02551.pdf  

Autor: B. De Brabandere, D. Neven & L. Van Gool 

 

Para lograr implementar esta función de pérdida, es necesario comprender sus 3 partes: 

1. Fuerza de tracción. Se toman todos los píxeles de una instancia y se calcula su 

media. La fuerza de tracción atraerá a todos los píxeles del embedding de la 

misma instancia al mismo punto. En resumen, esta parte reduce la varianza del 

embedding por cada instancia. 

 

𝐶 equivale al número de clusters 

𝜇𝑐 equivale al punto medio del cluster c 

𝛿𝑣 equivale al umbral de la fuerza de tracción 

𝑁𝑐 equivale a todos los puntos que forman un cluster c 

 

2. Fuerza de empuje. Se toman todos los puntos centrales del espacio del 

embedding y se empujan entre ellos para alejarlos. 

 

https://arxiv.org/pdf/1708.02551.pdf
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𝐶 equivale al número de clusters 

𝜇𝑐 equivale al punto medio del cluster c 

𝛿𝑑 equivale al umbral de la fuerza de empuje 

 

3. Regularización. Evita que los centros estén demasiado lejos del origen. 

 

𝐶 equivale al número de clusters 

𝜇𝑐 equivale al punto medio del cluster c 

Una vez calculadas las 3 partes, el valor de la discriminative loss se calcularía de la 

siguiente manera: 

 

𝛼 = 𝛽 = 1 

𝛾 = 0.001 

 

Si nos fijamos en [35], podemos ver como esta función de pérdida es capaz de agrupar 

puntos muy heterogeneos para lograr una segmentación de instancias: 
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Ilustración 19: Resultado de convergencia en la función discriminative loss 

Fuente: https://arxiv.org/pdf/1708.02551.pdf  

Autor: B. De Brabandere, D. Neven & L. Van Gool 

 

Como se puede observar en la ilustración 19, utilizando la función discriminative loss, 

partiendo de unos píxeles muy heterogeneos y sin un orden aparente se pueden agrupar 

facilitando el posterior clustering para conseguir la segmentación de instancias. De esta 

misma manera, se creará el embedding N-dimensional que separará los píxeles 

pertenecientes a líneas del carril diferentes facilitando su posterior clustering y 

segmentación de instancias. 

5.1.4 INSTANCE SEGMENTATION 

La instance segmentation se basa en identificar cada uno de los carriles en la imagen a 

nivel de píxel y saber diferenciarlos. Para ello, utilizamos los dos outputs de las ramas de 

E-Net aplicando la máscara binaria predecida a cada uno de los canales del embedding.  

Una vez aplicada la máscara sobre el embedding, se puede aplicar un algoritmo de 

clustering como MeanShift o DBSCAN para conseguir la segmentación de instancias. 

Este método, aunque funciona, no es para nada eficiente ya que el algoritmo de clustering 

tiene que clusterizar 512×256×4 píxeles. Esto computacionalmente es muy lento en el 

caso de MeanShift y en el caso de DBSCAN, además de ser muy lento, la cantidad de 

memoria RAM necesaria se dispara haciéndolo inviable. 

Por ello, en lugar de clusterizar todos los píxeles, se ha aplicado la máscara binaria al 

embedding por cada canal y posteriormente se ha aplicado MeanShift pero solamente a 

los pixeles cuyo valor no sea 0. Es decir, se ha aplicado el clustering a las líneas 

desechando todo el background. 

Una vez hecho esto, a cada cluster se le ha aplicado un color diferente para poder 

diferenciar dichas líneas: 

 

Ilustración 20: Imagen con máscara de instancias superpuesta 

https://arxiv.org/pdf/1708.02551.pdf
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Como se puede ver en la ilustración 20, una vez aplicado el algoritmo MeanShift, se han dividido 

las líneas en clusters y se le ha aplicado un color diferenciador a cada una de las líneas. 

5.2 TUSIMPLE DATASET 

Como se ha explicado previamente en la sección 4 de la memoria, descripción del 

proyecto, el dataset a utilizar es el TuSimple dataset. Este es un conjunto de datos 

utilizado como benchmark en competiciones y algoritmos de visión artificial aplicada a 

la percepción de vehículos autónomos. Para una correcta ingesta de los datos en el modelo 

desarrolado, ha sido necesario crear dos scripts de preprocesado: 

5.2.1 SCRIPTS DE PREPROCESADO 

Los scripts desarrollados para el correcto preprocesamiento del dataset TuSimple son los 

siguientes: 

5.2.1.1 PROCESS_TUSIMPLE_DATASET.PY 

Este script tiene como objetivo preprocesar el dataset TuSimple creando a partir de las 

imágenes originales y las anotaciones, las imágenes binarias y las imágenes de instancia 

de carril. 

Para ejecutar este script es necesario haber descargado previamente el benchmark 

TuSimple, descomprimir el archivo .zip y ejecutar el siguiente comando: 

python process_tusimple_dataset.py --src_dir “path hasta el archivo 

descomprimido del benchmark TuSimple” 

Una vez ejecutado este script, se crearán las carpetas test y train que contendrán a su vez 

3 carpetas más: una carpeta con las imágenes originales, otra con las imágenes binarias y 

otra con las imágenes de instancia de carril. Ejemplos de estas imágenes pueden verse en 

la ilustración 13. 

 

5.2.1.2 CONVERT_TUSIMPLE_DATASET_TO_BINARY.PY 

Este script tiene como objetivo convertir todas las imágenes preprocesadas en arrays 

numpy en el que cada imagen estará redimensionada a 256 píxeles de altura × 512 píxeles 

de anchura. 

Para ejecutar este script es necesario haber preprocesado previamente el benchmark 

TuSimple con el script anteriormente mencionado y ejecutar el siguiente comando: 

python convert_tusimple_dataset_to_binary.py 
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Una vez ejecutado este script, se creará una carpeta adicional dentro de las carpetas test 

y train las cuales contendrán a su vez los 3 archivos binarios .npy que contendrán los 

arrays numpy con las imágenes preprocesadas. 
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6. RESULTADOS DEL PROYECTO 

En esta sección expondré la progresión de los resultados del modelo LaneNet 

implementado desde 0 así como los problemas que se han ido encontrando durante su 

implementación. 

Inicialmente, se implementó la rama de la segmentación binaria utilizando una sola clase, 

una función de activación sigmoide y una weighted binary crossentropy loss. Para 

implementar esta función de pérdida, primero era necesario calcular los mapas de pesos 

de la siguiente manera: 

𝑤𝑒𝑖𝑔ℎ𝑡_𝑚𝑎𝑝𝑠𝑙𝑎𝑛𝑒 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑙𝑎𝑛𝑒 ∗ 𝑔𝑡_𝑏𝑖𝑛𝑎𝑟𝑦𝑏𝑎𝑡𝑐ℎ 

𝑤𝑒𝑖𝑔ℎ𝑡_𝑚𝑎𝑝𝑠𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 ∗ (1 − 𝑔𝑡_𝑏𝑖𝑛𝑎𝑟𝑦𝑏𝑎𝑡𝑐ℎ) 

 

𝑤𝑒𝑖𝑔ℎ𝑡𝑙𝑎𝑛𝑒 equivale al nuevo valor de los pesos de los carriles 

 

𝑤𝑒𝑖𝑔ℎ𝑡𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 equivale al nuevo valor de los pesos del background 

 

𝑔𝑡_𝑏𝑖𝑛𝑎𝑟𝑦𝑏𝑎𝑡𝑐ℎ equivale al lote de imágenes binarias anotadas 

 

Una vez calculados estos mapas de pesos, se aplica la función de pérdida weighted 

binary crossentropy: 

 

𝑙𝑜𝑠𝑠 =  − ∑ 𝑦𝑖 ∙ 𝑦𝑖̂

𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒

𝑖=1

 ∙ 𝑤𝑒𝑖𝑔ℎ𝑡_𝑚𝑎𝑝𝑠𝑙𝑎𝑛𝑒𝑖 + (1 − 𝑦𝑖) ∙ (1 − 𝑦𝑖̂) ∙ 𝑤𝑒𝑖𝑔ℎ𝑡_𝑚𝑎𝑝𝑠𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑𝑖 

 

𝑦𝑖 equivale a la imagen binaria en la posición i que se utiliza como ground truth 

 

𝑦𝑖̂ equivale a la predicción de la imagen binaria generada por el modelo 

 

𝑤𝑒𝑖𝑔ℎ𝑡_𝑚𝑎𝑝𝑠𝑙𝑎𝑛𝑒 equivale a una imagen con los nuevos pesos de los carriles 

𝑤𝑒𝑖𝑔ℎ𝑡_𝑚𝑎𝑝𝑠𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 equivale a una imagen con los nuevos pesos del background 

 

Sin embargo, esta función de pérdida tardaba mucho en converger y sus resultados no 

acababan de diferenciar las líneas del background de una manera eficaz. Además, el 

entrenamiento y la accuracy de la segmentación binaria eran muy inconsistentes por lo 

que cada entrenamiento lograba resultados diferentes de entre un 70% y un 95% de 

accuracy. Este es el mejor resultado que se logró con este número de clases, función de 

activación y función de pérdida: 
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Ilustración 21: Mejor accuracy de la rama de segmentación binaria con weighted binary crossentropy 

Como se puede ver en la ilustración 21, la rama de segmentación binaria logró unos muy 

buenos resultados en lo que a accuracy respecta. Sin embargo, necesitó al menos 100 

epochs y muchísimos intentos de entrenamiento. Además, como podremos ver en la 

siguiente ilustración, el resultado no llegó a ser lo suficientemente bueno porque la 

predicción tenía muchísimo ruido: 

 

Ilustración 22: Imagen original, predicción binaria y ground truth binaria 

Si prestamos atención a la columna central de la ilustración 22 podemos ver una gran 

cantidad de ruido en comparación con el ground truth por lo que es un resultado que no 

nos valdría para la posterior segmentación de instancias. Sin embargo, como he 

explicado previamente en el apartado 5.1.2, se cambió la función de pérdida de la 

weighted binary crossentropy a la weighted categorical crossentropy y los resultados 

mejoraron de una manera muy significativa: 
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Ilustración 23: Imagen original, máscara binaria, embedding y ground truth de segmentación 

En esta ilustración 23 podemos observar la gran mejora de la máscara binaria respecto a 

la ilustración 22. Ya no existe el ruido como el generado por la anterior función de 

pérdida y todos los valores de las líneas son 1s a diferencia de la anterior predicción que 

eran números entre 0 y 1. Sin embargo, podemos ver como en estos momentos del 

desarrollo la predicción del embedding no está funcionando bien. 

Después de revisar la red durante varios días, se comprendió que en la arquitectura de 

E-Net, el backbone de LaneNet, no estaban bien implementadas las ramificaciones de la 

segmentación binaria y el embedding. En vez de empezar la ramificación una vez 

terminada la parte del encode y hacer la decodificación por separado, se decodificaban 

ambas en una misma rama y en la última capa se creaba la rama de la máscara binaria y 

la del embedding. Esto, junto con una mala implementación de la discriminative loss 

function estaba creando un problema porque no permitía que los kernels de la parte del 

embedding pudieran ajustarse para lograr un mejor resultado. 

Muchos intentos después, no se consiguió arreglar el output del embedding. Este, 

siempre devolvía representaciones de 256×512×4 llenas de 0s en lugar de separar las 

diferentes líneas de carril en clusters para facilitar su instance segmentation. Hay varias 

hipótesis por las que se creía que el embedding no estaba funcionando bien: 

 

1. El paper original [1] no ha explicado algunos detalles importantes para la 

implementación de esta rama. 

2. La discriminative loss function utilizada no es correcta del todo. Esto implicaría, 

que los repositorios con mejores valoraciones de github no estarían siendo 

implementados de una manera fiel al paper [1]. 

3. Está ocurriendo el problema del desvanecimiento de los gradientes y por esto lo 

valores del embedding están convergiendo en 0. 
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Finalmente, se detectó el error en la discriminative loss function. Este, fué un error de 

codificación que no permitía que el framework de Keras actualizara los gradientes de 

algunas capas y por lo tanto no se lograban resultados. Una vez corregido este fallo de 

codificación los resultados fueron muy buenos: 

 

Ilustración 24: Resultados finales de segmentación binaria y embedding 

 

En la ilustración 24, se puede observar el mejor resultado de mi implementación de 

LaneNet. A diferencia de la ilustración, 23, el embedding ha sido arreglado y si se observa 

fijamente, se puede apreciar como los pixeles tienen valores diferentes para cada una de 

las líneas. Esto, facilitará el clustering para posteriormente hacer la segmentación de 

instancias. 

El resultado final a nivel de output con un learning rate de 0.0005, batch size de 8, 

regularización l2 a nivel de cada kernel convolucional de 0.0002, un valor de 𝛼 = 1, 

𝛽 = 1, 𝛾 = 0.001, 𝛅d = 3.0, 𝛅v = 0.5 y un optimizador Adam, es el resultado que se 

puede ver en la ilustración 24. En este resultado la máscara binaria llega a un 95.3% de 

accuracy y el embedding logra separar los valores de las líneas de carril para facilitar el 

posterior cluster y la segmentación de instancias. 

En lo que a la instance segmentation se refiere, a pesar de la falta de detalles del paper 

de LaneNet [1] se han logrado resultados similares y sin lugar a dudas han cumplido 

tanto mis expectativas como las de mi director del proyecto.  

Este sería un ejemplo del modelo LaneNet en acción puesto a prueba sobre diferentes 

imágenes: 
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Ilustración 25: Aplicando LaneNet sobre imágenes reales 

 

En la ilustración 25, se puede ver como LaneNet consigue diferenciar las líneas de carril 

con gran precisión. Esto podría mejorarse utilizando una transformación de perspectiva 

utilizando el modelo H-Net mencionado en el paper [1]. Sin embargo, este no era uno de 

los objetivos del proyecto por lo que queda pendiente para trabajos futuros. 

Para lograr esta precisión han sido necesarias 41 epochs y alrededor de 6 horas de 

entrenamiento: 

 

Ilustración 26: Loss general durante el entrenamiento de LaneNet 



6. RESULTADOS DEL PROYECTO 

 50 

 

Ilustraciones 27 y 28: Loss de la rama del embedding y loss de la rama de segmentación 

 

 

Si nos fijamos en las ilustraciones 26, 27 y 28, podemos visualizar como se ha ido minimizando 

tanto la función de pérdida general como las funciones de pérdida de cada rama de LaneNet. A 

simple vista, estos gráficos sugieren que LaneNet ha convergido bien como se proponían en el 

paper [1]. 

Para más información y poder conseguir un entendimiento más profundo sobre LaneNet, este es 

el enlace de mi notebook de Google Colaboratory con el que tendréis acceso como lectores: 

https://drive.google.com/drive/folders/1q_rV3KVk5fUe6bRlcCfItXaitmQWoeAi?usp=sharing  

https://drive.google.com/drive/folders/1q_rV3KVk5fUe6bRlcCfItXaitmQWoeAi?usp=sharing
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7. PLANIFICACIÓN DEL PROYECTO 

Se ha planificado el proyecto de una manera incremental y modular. Estos han sido los 

pasos planificados a seguir en orden cronológico: 

1. Reunir información sobre algoritmos y métodos utilizados en el sector de la 

conducción autónoma 

a. Leer papers 

b. Leer artículos 

 

2. Preparar el dataset TuSimple para la posterior ingesta del modelo 

a. Comprender la naturaleza del dataset TuSimple 

b. Preprocesar el dataset TuSimple 

c. Convertir las imágenes preprocesadas a binario para facilitar la ingesta 

 

3. Implementación de LaneNet 

a. Implementar arquitectura E-Net sin añadir las ramas de output 

b. Implementar rama de segmentación binaria 

c. Implementar rama de embedding 

d. Implementar el método de clustering para crear la instance segmentation 

 

4. Analizar el desempeño de LaneNet utilizando la accuracy como en el paper 

 

5. Crear clips de video poniendo el modelo a prueba en videos con escenarios 

reales 

a. Fácil. Clip de conducción en autopista 

b. Intermedio. Clip de conducción en autopista 

c. Difícil. Clip de conducción en autopista 

d. Muy difícil. Clip de conducción en intersección de ciudad 
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8. PRESUPUESTO 

 

CONCEPTO MES 0 MES 1 MES 2 MES 3 

Suscripción Mensual a Google 

Colab Pro 

9.99 € 9.99 € 9.99 € 9.99 € 

TOTAL 39.96 € 

 

Inicialmente, el presupuesto del proyecto iba a ser de 0 € pero debido a las limitaciones del 

hardware y de la computación en la nube gratuita disponible, se han gastado 9.99 € al mes en 

una suscripción a Google Colab Pro. Durante los 4 meses de duración del proyecto, este gasto 

ha supuesto un gasto total de 39.96 €. 
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9. CONCLUSIONES Y TRABAJOS FUTUROS 

En este proyecto, se ha recreado la arquitectura que aparece en el paper de LaneNet [1] 

para lograr una segmentación de instancias en tiempo real sin indicar el número de 

carriles de antemano. Se han utilizado los mismos hiperparámetros que se indican en el 

paper [1] y las imágenes del dataset TuSimple. A pesar de la falta de detalles en la 

implementación por parte del paper, se ha conseguido implementar la arquitectura 

LaneNet con buenos resultados. Con ayuda de mi director del proyecto de fin de máster, 

me he dado cuenta de que los repositorios de github con mejores valoraciones de 

internet en la implementación de LaneNet están mal implementados. Estos repositorios, 

rondaban las 1500 estrellas en github lo cual indica que son muy populares pero, a pesar 

de su popularidad, su manera de computar el embedding utilizando la máscara binaria es 

errónea ya que no aplican la máscara binaria a los resultados del embedding para la 

posterior segmentación de instancias sino que aplican un postprocesado directamente 

sobre el embedding y la máscara binaria y añaden diferentes umbrales para eliminar el 

ruido y posteriormente poder hacer el clustering. 

Volviendo a mi implementación, el modelo esta implementado al completo excepto por 

el apartado de lane fitting el cual no era un objetivo a cumplir para este proyecto. A pesar 

de los problemas que se han tenido durante toda la implementación, el proyecto ha sido 

un éxito. 

Este proyecto de fin de máster me ha supuesto uno de los mayores retos a los que me he 

enfrentado tanto por su complejidad como por lo novel que soy en el campo del deep 

learning y la investigación. He podido experimentar una gran mejoría en mis habilidades 

para comprender papers y en el deep learning y he comprendido muchísimos conceptos 

que hace unos meses me resultaban muy difusos. 

En trabajos futuros, se podría implementar la red H-Net al igual que en el paper original 

[1] para lograr un mejor ajuste de los carriles al crear una transformación de perspectiva 

y una vez logrado esto, se podrían utilizar técnicas de data augmentation y anotar más 

imágenes del TuSimple dataset para ver hasta donde es capaz de llegar este modelo. 

Otro gran problema con los vehículos autónomos es la deficiente explicabilidad e 

interpretabilidad de los modelos de deep learning y esta podría ser una buena dirección a 

tomar para trabajos futuros. Un vehículo autónomo que toma decisiones sin que los 

humanos entendamos muy bien porque es algo muy peligroso ya que la conducción es 

una acción que en caso de hacerse mal puede causar tanto daños humanos como 

estructurales. 

Para concluir, durante el desarrollo de este proyecto he podido observar el gran futuro y 

a la gran velocidad a la que evoluciona este campo y estoy seguro de que seguirá siendo 
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de esta manera y que seguirá atrayendo una gran inversión por parte de la academia pero 

sobre todo por parte de las empresas privadas. 
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