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Resumen

Este proyecto de fin de master consiste en utilizar la arquitectura LaneNet descrita en el
paper Towards End-to-End Lane Detection: an Instance Segmentation Approach [1] para
la deteccion de carriles en tiempo real. Esta arquitectura aplica el deep learning y el
clustering para lograr la instance segmentation de los carriles en tiempo real. Consiste en
un autoencoder con una parte de codificacion comun y una parte de decodificacion
dividida en dos ramas: la rama de la segmentacion binaria y la rama del embedding. Este
modelo ha sido entrenando sobre el TuSimple dataset que es un conjunto de datos que se
suele utilizar de benchmark en los problemas de percepcion para vehiculos autbnomos y
ha sido desarrollado en Python con Keras utilizando la computacién en la nube de Google
Colaboratory,

Los resultados de la rama de segmentacion binaria han sido muy buenos logrando asi
resultados parecidos a los del paper [1]. Sin embargo, la rama del embedding, no han
podido ser replicados a pesar de reproducir tanto la arquitectura como los hiperpardmetros
del paper. Esto se debe a una falta importante de detalle a la hora de describir dicha
arquitectura.

Ademas, todo este proceso ha servido para detectar errores importantes en
implementaciones de esta arquitectura disponibles en github muy bien valoradas, pero
que no son fieles al contenido del paper.

Descriptores

e Deep Learning
e Computer Vision
e Autonomous Driving
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TRABAJO FIN DE MASTER

1. INTRODUCCION

En los dltimos 6 afios, los vehiculos autbnomos han atraido una inmensa cantidad de
capital por parte de inversores y grandes compafiias tecnoldgicas y automovilisticas. Esto
ha generado una carrera y una feroz competencia para buscar una tecnologia que permita
la conduccion autonoma total que, a dia de hoy, sigue muy disputada.

1.1 HISTORIA

Desde que se inventaron los vehiculos, la tecnologia se ha ido puliendo década tras década
convirtiéndolos asi en vehiculos con mayor autonomia, mas seguros, mas faciles de
manejar y més inteligentes. Esta tendencia se ha seguido cumpliendo durante décadas
pero fue en el afio 2004 cuando se comenzo a pensar en alcanzar otro nivel que parecia
imposible para la época. En 2004, el DARPA [2], Defense Advanced Research Projects
Agency, organizé el primer DARPA Grand Challenge [3]. En esta competicidn, vehiculos
autonomos se enfrentaron en una carrera de 240 km a través del desierto de Mojave de
los Estados Unidos atravesandolo desde Barstow (California) hasta pasada la frontera de
California con Nevada. A pesar de que habia muchos intereses puestos en esa competicion
por su premio de un millén de ddlares, el vehiculo qué mas lejos Ilegé solo recorrié 11.78
km y por lo tanto se considerd que la competicion habia sido un fracaso. A pesar de ello,
el siguiente afio se volvid a realizar y esta vez cinco vehiculos lograron terminar la carrera
ganando un total de tres millones y medio de ddlares en premios.

Durante el transcurso de los afios y de las DARPA Grand Challenges, se ha ido
investigando sobre el uso de algoritmos, RADAR, camaras y LiDAR para lograr que los
vehiculos autébnomos tuvieran una mejor percepcion del entorno y asi lograr detectar y
evitar obstaculos. Ademas, gracias a la ley de Moore el poder computacional ha
continuado aumentando y abaratandose dando pie a nuevos métodos como los algoritmos
de deep learning para poder aplicarlos a la problematica de la conduccién autonoma.

Esta reduccion de los costes y mejora del software y del hardware, ha dado pie a diferentes
empresas a abordar esta problematica y a tratar de crear su propio vehiculo auténomo.
Como por ejemplo, Waymo, Tesla, General Motors, Apple, Uber, Mercedes-Benz, etc.

A dia de hoy, a pesar de que la carrera tecnoldgica por lograr el primer vehiculo con
autonomia total sigue en marcha, empresas como Tesla 0 Waymo llevan la delantera y
actualmente tienen flotas de vehiculos desplegados en las calles con capacidades muy
cercanas a la autonomia total.
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1. INTRODUCCION

1.2 ESTADO DEL ARTE EN LA DETECCION DE
CARRILES

Hoy en dia, los coches totalmente autonomos son el principal foco de atencién de la
investigacion en la informética y la robdtica, tanto a nivel académico como industrial. El
objetivo de estas investigaciones es llegar a una comprension plena del entorno que rodea
al automdvil mediante el uso de diferentes sensores y modulos de percepcion. La
deteccion de carriles basada en cdmaras es un paso importante para lograr esta percepcion
total del entorno, ya que permite al automovil posicionarse adecuadamente dentro de los
carriles de la carretera. Ademas, la deteccion de los carriles de la carretera también es
crucial para una decision posterior de salida del carril o de planificacion de trayectoria.

Un factor clave para lograr coches totalmente autonomos es realizar una deteccion de
carril precisa basada en camaras en tiempo real y para esto se ha hecho muchisima
investigacion y se han logrado grandes avances. Las primeras aproximaciones para
solucionar esta problematica, fueron los métodos tradicionales de deteccion de carril
como [4], [5], [6], [7], [8] Yy [9]. Estos métodos tradicionales son una combinacién de
caracteristicas artesanales y heuristicas altamente especializadas para identificar los
segmentos de los carriles. Unas de las elecciones mas populares entre los métodos
artesanales son las caracteristicas basadas en colores [10], el tensor de estructura [11], el
filtro de barra [12] y las caracteristicas de cresta [13], que normalmente se combinan con
una transformada de Hough [14], [15] v filtros de particulas Kalman [16], [17], [12].

Después de identificar los segmentos del carril, se emplean técnicas de post-
procesamiento para filtrar las detecciones errdneas y agrupar los segmentos para formar
las lineas finales. Sin embargo, por lo general, estos enfoques tradicionales son propensos
a problemas de robustez debido a las variaciones de la escena de la carretera que no
pueden ser modeladas facilmente por esos sistemas basados en reglas.

En los ultimos afios, los detectores artesanales han sido reemplazados por redes
neuronales profundas. Estas redes hacen segmentaciones de los carriles a nivel de pixel.
En [18] se utiliza un descriptor de caracteristicas de jerarquia de pixeles para modelar la
informacién contextual y un algoritmo de boosting para seleccionar caracteristicas
contextuales relevantes para la deteccién de marcas de carril. De una manera similar, en
[19] se combina una red neuronal convolucional (CNN) con el algoritmo RANSAC para
detectar carriles a partir de imagenes de bordes. Se ha de mencionar, que en este ultimo
método, la CNN se utiliza principalmente para mejorar la imagen y sélo si la escena de
la carretera es compleja, por ejemplo, incluye arboles en los bordes de la carretera, vallas
0 intersecciones. En [20] se muestra como los modelos de CNN existentes pueden
utilizarse para aplicaciones de conduccion en autopistas, entre las que se encuentra una
red neuronal convolucional de extremo a extremo que realiza la deteccion y clasificacion
de carriles. En [21] se introduce la Dual-View CNN (DVCNN) que utiliza una vista
frontal y una vista superior de imagenes simultaneamente para excluir las detecciones
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TRABAJO FIN DE MASTER

falsas y eliminar las estructuras sin forma de linea. En [22] se propone el uso de una red
convolucional profunda multitarea que se centra en encontrar atributos geométricos de
los carriles, como la ubicacion y la orientacién, junto con una red neuronal recurrente
(RNN) que detecta los carriles. Méas recientemente, en [23] se muestra como una red
multitarea puede manejar conjuntamente la deteccion y el reconocimiento de carriles y
marcas viales en condiciones de clima adverso y de poca iluminacién. Ademas de la
capacidad de las redes mencionadas de segmentar mejor las marcas de la carretera [20],
su gran campo receptivo les permite también estimar los carriles incluso en los casos en
que no hay marcas en la imagen. Sin embargo, en una etapa final, las segmentaciones de
carril generadas todavia tienen que ser desenmarafiadas en las diferentes instancias del
carril. Para hacer frente a este problema, algunos enfoques han aplicado técnicas de post-
procesamiento que se basan de nuevo en la heuristica, generalmente guiada por las
propiedades geométricas, como se hace en [19], [25] por ejemplo. Como se ha explicado
anteriormente, estos métodos heuristicos son costosos desde el punto de vista
computacional y propensos a problemas de robustez debido a las variaciones de la escena
de la carretera. Otra linea de trabajo [26] plantea el problema de la deteccidn de carriles
como un problema de segmentacion de clases multiples, en el que cada carril forma su
propia clase. De esta manera, la salida de la red contiene mapas binarios desenmarafiados
para cada carril y puede ser entrenada de una manera de extremo a extremo. A pesar de
sus ventajas, este método se limita a detectar s6lo un nimero predefinido y fijo de carriles.
Ademas, como cada carril tiene una clase designada, no puede hacer frente a los cambios
de carril.

En el paper Towards End-to-End Lane Detection: an Instance Segmentation Approach
[1], que es en el que se va a basar este proyecto de fin de master, tratan de ir mas alla de
las limitaciones mencionadas y se propone plantear el problema de la deteccion de carriles
como un problema de instance segmentation, en el que cada carril forma su propia
instancia dentro de la clase de carril. Inspirado por el éxito de las redes de segmentacién
semantica [26],[27], [28], [29] V las tareas de segmentacion de instancias [30], [31],[32],
[33], [34], [35], se disefia una red ramificada y multitarea, como [27] para la segmentacion
de instancias de carril, que consiste en una rama de segmentacion de carril y una rama de
embedding de carril que puede ser entrenada de extremo a extremo. La rama de
segmentacion de carril tiene dos clases de salida, fondo o carril, mientras que la rama de
embedding de carril desenreda ain mas los pixeles de carril segmentados en diferentes
instancias de carril. Al dividir el problema de deteccidn de carriles en las dos tareas
mencionadas, podemos utilizar plenamente la potencia de la rama de segmentacion de
carriles sin tener que asignar diferentes clases a los diferentes carriles. En cambio, la rama
de embedding de carriles, que se entrena utilizando una funcion de pérdida de clustering,
asigna una identificacion de carril a cada pixel de la rama de segmentacion de carriles,
ignorando los pixeles de fondo. Al hacerlo, se alivia el problema de los cambios de carril
y se puede manejar un namero variable de carriles, a diferencia de [24].
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2. ¢QUE ES EL COMPUTER VISION?

El computer vision o vision artificial en espafiol, es un campo de estudio dentro de la
inteligencia artificial que busca el desarrollo de técnicas para ayudar a los ordenadores a
“ver” y comprender el contenido digital de imagenes y videos [36].

El problema de la vision por ordenador parece sencillo porque las personas lo resolvemos
de una manera trivial. No obstante, sigue siendo en gran medida un problema sin resolver
debido a nuestra limitada comprension de la vision biolégica y a la complejidad de la
percepcion en un mundo fisico tan dindmico como el nuestro [36].

El algoritmo maés utilizado para las aplicaciones que hacen uso de vision artificial, son las
redes neuronales convolucionales o0 CNNs. Estos algoritmos de deep learning han sido
utilizados para el reconocimiento de imagenes desde finales de la década de los 80 y
surgieron a partir de un estudio del cortex visual del cerebro humano. [37]

2.1 REDES NEURONALES CONVOLUCIONALES

Las redes neuronales convolucionales 0 CNNs son un tipo de modelo de red neuronal que
permite extraer representaciones de mayores dimensiones de una imagen. A diferencia de
los métodos clasicos de reconocimiento de imagenes, en los que un programador debe de
indicar todas las reglas de manera manual, las CNNs toman los pixeles de una imagen,
entrenan un modelo y extraen caracteristicas o patrones de la imagen logrando una mejor
clasificacion [38]. Ademas, la propia arquitectura de las CNNSs, a diferencia de las redes
neuronales clasicas, permite detectar patrones en las iméagenes independientemente de su
localizacion en las mismas. Es decir, el modelo detectara el patrén de las orejas de un
gato independientemente de su posicién en la imagen.

2.1.1 CAPA DE CONVOLUCION

El blogue de construccion mas importante de una red neuronal convolucional es la capa
de convolucién o convolutional layer en inglés. Estas capas se basan en una operacion
matematica Illamada convolucion:

15
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o[1[1[T[of0] 5.
001]5<1><Q<.0. .............................. 1434{1
olofofifi]1fo 1]0]1 1[214]3][3
olofo|i]+{0[0]«_ |01 =149 3|4]1
olo[1[1]ofo [0} 1|01 A EIRE
0/1{1]0{0|0|O0 3|13]1]11]0
1{1]0({0]0(0]0

I K IxK

llustracion 1: Operacion de convolucion

Fuente: https://github.com/PetarV-/TikZ/tree/master/2D%20Convolution
Autor: Petar Velickovié¢

Como podemos observar en la ilustracion 1, en una convolucién una ventana barre la
imagen inicial aplicandole un filtro. Con este filtro se calcula el producto lo que hace
que se resalten las caracteristicas mas relevantes de la imagen [38]. La operacion
resaltada en color de la ilustracion 1 la podemos definir asi, donde * indica una

convolucion:

114- 115 116 Kll KIZ K13
Ly L Le|* [Ka1 Kap Kpz| =1y X Kig + 115 X Kyp + 1ig X Ki3 +
I34 I35 36 K31 K3; Ksg

Iy X K3y + s X Ky + Ihe X Kpz + I34 X K31 + I35 X K35 + [36 X K33

1 0 O 1 0 1
1 1 0|0 1 0/=1X1+0x0+0x1+1x0+1x1+0+0+
1 1 1 1 0 1

I1x1+1x0+1x1=4

Con esta operacion matematica, se puede detectar una caracteristica o patron concreto
en una imagen y producir mapas de caracteristicas los cuales enfatizan las
caracteristicas o patrones mas importantes. Estos mapas de caracteristicas siempre iran
cambiando dependiendo de los filtros o kernels que cambiaran automaticamente acorde

al descenso del gradiente para minimizar la funcion de pérdida de la prediccion [38].
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El potencial de este tipo de redes reside en su procesamiento en cascada. Es decir,
cuantos mas filtros se utilicen, més caracteristicas extraera la CNN permitiendo asi que
se encuentren mas caracteristicas pero con un costo mayor en el tiempo de

entrenamiento [38]:

Low-level Middle-level Top-level
feature feature feature

llustracion 2: Mapas de caracteristicas de CNN entrenada sobre ImageNet

Fuente: https://arxiv.org/pdf/1311.2901.pdf
Autor: Matthew D. Zeiler & Rob Fergus

Pero, ¢Qué sucede cuando la imagen no tiene los suficientes bloques adyacentes para
deslizar el filtro sobre ella? ;Deberian de ser eliminados estos bloques?

Cuando los bloques adyacentes son insuficientes para ajustar el filtro, normalmente no
se eliminan porque se pierde informacion del input. Para estos casos se insertan 0s
afiadiendo asi los bloques adyacentes que necesitemos [38]. Este proceso se llama

padding.

2.1.2 CAPA DE POOLING

Las CNNs utilizan el pooling para reemplazar la salida de una convolucién con una
simplificacion de los datos. Esto reduce el tamafio del inputy el tiempo de procesamiento
[38].

Estas operaciones reciben dos hiperparametros o hyperparameters en inglés: stride y
tamarnio.

El stride determina cuantos elementos debe saltarse la ventana al barrer las matrices
mientras que el tamafio determina el tamafio de la ventana [38].

Existen varios tipos de pooling, como por ejemplo:

17
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e Max pooling. Se queda con el elemento més grande de la ventana.
e Min pooling. Se queda con el elemento mas pequefio de la ventana.
e Average pooling. Se queda con la media de todos los elementos de la ventana.

Single depth slice

o (IRl 2 | 4
max pool with 2x2 filters =
oo R6H 7 | 8 and stride 2 6 8
3 | 2 NG 3|4
| 1| 2 FNiES
7 >

llustracion 3: Operacion de max pooling

Fuente: https://cs231n.github.io/convolutional-networks/
Autor: Stanford University

La operacion max pooling de la ilustracion 3 se podria definir de la siguiente manera:

max _pooling(filter size, stride, input) =

Inputy; Input,, Inputz Inputy,
) Input,; Input,, Input,; Inputy,| |
max_pooling | 2x2,2, Inputy, Inputs, Inputs; Inputs,| |

Input,, Input,, Input,; Inputy,

max {Input,q, Input,,, Input,,, Input,,} max {Input,s, Input,,, Input,s, Input,,}
max {Inputsq, Inputs,, Input,,, Input,,} max {Inputss, Inputs,, Input,s, Inputy,}

1 1 2 4

. 5 6 7 8| \_

max _pooling | 2x2, 2, 3 2 1 0 =
1 2 3 4

[max{1,1,5,6} max{2,4,7,8}] _
max{3,2,1,2} max{1,0,3,4}]

6 8
3 4
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2.1.3 FUNCIONES DE ACTIVACION

Otro elemento fundamental para el correcto funcionamiento de cualquier red neuronal
son las funciones de activacion. Estas funciones de activacion determinan si una neurona
debe activarse o no [39]. Para saber si una neurona debe activarse, una neurona ha de
calcular una weighted sum o suma balanceada sumandole un sesgo o bias y después
pasarle el resultado a una funcion de activacion:

Z= Z(Weight * input) + bias

A=o0(Z)
2.1.3.1 SIGMOIDE
7)) = —
g T 14eZ

10 -

0.8 4

0.6 4

0.4 -

0.2 4

0.0 4

T T T T T T

-100 -75 -50 -25 00 25 50 75 100

llustracion 4: Funcién de activacion sigmoide

Fuente: https://towardsdatascience.com/what-is-activation-function-1464a629cdca

e Ventajas
o Funciona bien en problemas de clasificacion binaria porque convierte
todos los valores en el rango (—oo, ) a valores en el rango (0,1) [39].
e Desventajas
o No funciona en problemas de clasificacion de multiples etiquetas
(multilabel classification) [40].
o La derivada para el calculo del gradiente siempre es 0, por lo que es
imposible actualizar los pesos [40].
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2.1.3.2 TANH

La funcion de activacion tanh es similar a la sigmoide. Sin embargo, la tanh es simétrica
en 0, convierte todos los valores en el rango (—oo, ) a valores en el rango (—1,1) y las
derivadas son mas pronunciadas por lo que entrena méas rapidamente. Por este motivo, la
funcion tanh suele ser mejor utilizarla en capas intermedias pero dado que es una funcién
computacionalmente bastante costosa y suele generar problemas con el desvanecimiento
del gradiente, se suele utilizar la funcion ReLU en su lugar [40].

eZ—e 2

)= —
o(2) ez +e”%

100 4

.75 4

050 4

025 4

0.00 4

-0.25 4

—0.50 4

—0.75 -

=1.00 4

100 -75 -50 -25 00 25 50 75 100

llustracién 5: Funcion de activacion tanh

Fuente: https://towardsdatascience.com/what-is-activation-function-1464a629cdca

e Ventajas
o Funciona bien en capas intermedias por su simetria en el valor 0y
porque convierte todos los valores en el rango (—oo, o) a valores en el
rango (—1,1) [40].
o El gradiente es mas pronunciado que en la funcion sigmoide porque las
derivadas son mas pronunciadas [40].
e Desventajas
o Aligual que la funcion sigmoide, la funcion de activacion tanh sigue
teniendo el problema de desvanecimiento del gradiente [40].
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2.1.3.3 RELU

a(2) = {0, g’tieim?ise
10 4
g -
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llustraciéon 6: Funcion de activacion ReLU

Fuente: https://towardsdatascience.com/what-is-activation-function-1464a629cdca

e Ventajas
o Esfacil de implementar y muy ligero computacionalmente [40].
o Laoptimizacion es facil cuando la funcion de activacion es lineal [40].
o Es la funcion de activacion mas utilizada en las redes neuronales [40].
e Desventajas
o Mayor facilidad de que la salida de las neuronas sea 0. Si la salida es 0,
no hay gradiente y las neuronas no estan activadas, por lo tanto, esto
puede generar un deficiente rendimiento del modelo [40].
o No es adecuada para las redes neuronales recurrentes 0 RNNs [40].
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2. ¢(QUE ES EL COMPUTER VISION?

2.1.3.4 SOFTMAX

La funcion activacion softmax es diferente a las demas. Esta funcion de activacién computa una
distribucion de probabilidades por lo que se suele utilizar en la Gltima capa de las redes
neuronales cuando queremos predecir multiples clases [40].

Output Softmax »
layer activation function Probabilities
(1.3 0.02]
5.1 esi 0.90
2.2 | m—|0.05
Y, e
0.7 j=1 0.01
| 1.1 ] 0.02]

llustracion 7: Ejemplo de funcionamiento de la funcién de activacion softmax

Fuente: https://towardsdatascience.com/softmax-activation-function-explained-a7elbc3ad60

Autor: Dario Radeci¢

2.1.4 ARQUITECTURA COMPLETA DE UNA RED NEURONAL
CONVOLUCIONAL

Feature maps

i R
-

......... I
e .

-
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Convolutions Subsampling Convolutions Subsampling Fully connected

llustracion 8: Arquitectura completa de una red neuronal convolucional

Fuente: https://towardsdatascience.com/understanding-cnn-convolutional-neural-network-69fd626ee7d4

Una vez entendidos todos los conceptos basicos que forman una red neuronal
convolucional, podemos observar una arquitectura completa en la ilustracion 8. Esta red
estd compuesta de dos capas convolucionales seguidas de sus capas de pooling y
finalmente podemos ver como una capa fully connected reduce la dimensionalidad de
todos los mapas de caracteristicas generados por los procesos convolutivos a un vector
unidimensional. Este vector, contiene todas las caracteristicas o patrones mas relevantes
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de la imagen y si a este le aplicamos la funcion de activacion softmax, nos devolvera una
distribucion de probabilidades. Para comprender mejor esta Ultima fase en la que se hace

la prediccidn, voy a inventarme unos valores para explicar este proceso de una manera
mas intuitiva:

Clases = {Dinosaurio, Perro, Gato, Robot, Pato, 0so}
Vector unidimensional de la capa fully connected = [1.4,8.9,—11.1,2.1,3.0,27.1]
Distribucién de probabilidades después del softmax = [0.01,0.02,0.01,0.8,0.06,0.1]

Confianza clase Dinosaurio: 1%
Confianza clase Perro: 2%
Confianza clase Gato: 1%

Confianza clase Robot: 80%
Confianza clase Pato: 6%
Confianza clase 0so: 10%

Confianza en las predicciones:

Segun estos datos, esta red neuronal convolucional predeciria con un 80% de confianza
que el input es un Robot
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3. DEFINICION DEL PROYECTO

3.1 OBJETIVOS
Para lograr un proyecto satisfactorio, se han planteado varios objetivos:

e Lograr un modelo basado en el paper de LaneNet [1] con unos resultados
similares.

e Aportar una implementacion en la API de alto nivel de Tensorflow, Keras. En la
actualidad, no existe ningan repositorio disponible en internet con una
implementacién con esta API.

e Una vez finalizada la implementacion del modelo, testearla usando benchmarks
de referencia en el area.

3.2 ALCANCE

e Leerycomprender el paper de LaneNet [1] para poder hacer una implementacién
desde 0y ajustar los hiperpardmetros para lograr los mejores resultados posibles.

e Implementar el modelo completo utilizando Keras en todos los apartados en los
que sea posible.

e Analizar el rendimiento del modelo mediante métricas y datasets de referencia en
el area.

3.3 INNOVACIONES TECNOLOGICAS

Como innovacidn tecnoldgica se propone crear una implementacion de LaneNet en la
API de alto nivel de Tensorflow, Keras. Esto es una innovacion porque actualmente no
existe ningun repositorio en internet que tenga una implementacién con esta API.

Este modelo basado en el deep learning, es muy relevante en el campo de la conduccion
autonoma pero también para diferentes areas en los que la deteccion de lineas sea
relevante como por ejemplo en la deteccion de lineas de carril en los aeropuertos,
aparcamientos, etc. La facilidad de este modelo para generalizar a partir de imagenes de
entrenamiento lo convierte en una eleccion interesante para todas estas areas en lugar de
confiar en métodos heuristicos que no son capaces de generalizar ni son tan robustos
como LaneNet.
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4. DESCRIPCION DEL PROYECTO

El proyecto se basa en crear una implementacion del modelo LaneNet mencionado por
primera vez en el paper del 2018 Towards End-to-End Lane Detection: an Instance
Segmentation Approach [1]. Como no existe ninguna implementacion en Keras, la API
de alto nivel de Tensorflow, LaneNet se implementara con este framework.

4.1 LANENET

LaneNet es una arquitectura que logra resultados del estado del arte en la deteccion de
carriles con una precision del 96.4% y un F1 score de 94.80 en el dataset TuSimple. Estas
métricas sitlan a LaneNet en la posicion 6 y 13 respectivamente del ranking global sin
apenas diferencia alguna con los valores del modelo que lidera el ranking en el benchmark
TuSimple. [41]

clustering

llustracion 9: Arquitectura LaneNet

Fuente: https://arxiv.org/pdf/1802.05591.pdf
Autor: Davy Neven, Bert De Brabandere, Stamatios Georgoulis, Marc Proesmans & Luc Van Gool

En la ilustracion 9, se puede ver la arquitectura de LaneNet. Esta compuesta de dos
ramas. La rama de segmentacion (rama inferior) esta entrenada para producir una
mascara de carril binario y la rama de embedding (rama superior) genera un embedding
N-dimensional por cada pixel de carril, de modo que los embeddings del mismo carril
estan cerca y las de diferentes carriles estan lejos.

Para simplificar, se muestra un embedding bidimensional por pixel. Todos los pixeles se
visualizan en un mapa de color en los ejes X e Y. Dentro de estos pixeles se diferencian
los que pertenecen a un carril y los que no. Después de enmascarar los pixeles de fondo
usando el mapa de segmentacion binario de la rama de segmentacion, los embeddings
de carril (puntos azules) se clusterizan y se asignan a sus centros de cluster (puntos
rojos).
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4.1.1 BINARY SEGMENTATION

La rama de segmentacion binaria, se basa en la arquitectura de E-Net [43]. Esta
arquitectura basada en los principios encode-decode, es rapida y compacta, por lo que
permite realizar la segmentacion semantica en tiempo real. Como se ha dicho
previamente, la deteccion en tiempo real es fundamental para lograr un vehiculo de
conduccion autonoma dado que unos pocos milisegundos de retardo en una prediccion
pueden suponer el éxito o el fracaso de estos vehiculos.

Binary Image

Image

llustracion 10: Input y output 6ptimo de la rama de segmentacioén binaria de LaneNet

En la ilustracion 10, se pueden observar tanto las iméagenes originales de input de
LaneNet, como el output dptimo de la rama de segmentacion binaria. En este contexto,
Optimo se refiere a que son imégenes anotadas a mano, también conocido como ground
truth.

Esta rama de LaneNet, tendrd como objetivo predecir las lineas de los carriles
devolviendo una mascara binaria a partir de imagenes de carreteras reales.

4.1.2 EMBEDDING

La rama de embedding, también se basa en la arquitectura E-Net pero a diferencia de la
rama de segmentacion binaria, esta rama es entrenada para crear una representacion N-
dimensional. En el paper [1] utilizan 4 dimensiones o canales por lo que el output en este
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caso es una representacion de la misma altura y anchura que la imagen original pero con
4 canales de color.

Esta representacion de mayores dimensiones facilita utilizar el clustering para la posterior
segmentacion de instancias.

Embedding Image

0 100 200 300 400 500

llustracion 11: Ejemplo de embedding

Este es un ejemplo de lo que podemos esperar de un embedding. En esta ilustracion se
puede observar cobmo hay valores diferentes en las zonas en las que se encuentran las
lineas de carril. Estos diferentes valores facilitaran hacer un clustering una vez aplicada
la mascara binaria sobre el embedding.

4.1.3 INSTANCE SEGMENTATION

En esta dltima parte, se tiene que identificar cada linea del carril afiadiéndole un
identificador o color diferente a cada una de las lineas. Para lograr esto, se hace uso de la
mascara binaria, el embedding y algo de post-procesamiento junto con algunos algoritmos
de clustering.

Este proceso deberia de permitir lograr unos resultados parecidos a los que podemos ver
en esta ilustracion:
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llustracion 12: Ejemplo output final LaneNet

Fuente: https://github.com/MaybeShewill-CV/lanenet-lane-detection
Autor: MaybeShewill-CV

En la ilustracién 12, podemos ver un ejemplo de lo que podemos esperar como output
final de LaneNet. La mascara final de instance segmentation se superpondra a la imagen
de la carretera y se podran reconocer las diferentes lineas del carril con diferentes colores.

4.2 DISENO EXPERIMENTAL

Este proyecto es puramente experimental y busca lograr resultados similares a los del
paper original [1]. Por ello, se ha decidido utilizar el mismo benchmark propuesto en [1],
el TuSimple dataset.

Ademas, la naturaleza experimental de este proyecto hace que tenga sentido desarrollarlo
en un entorno en la nube como Google Colaboratory.

4.2.1 TUSIMPLE DATASET

El dataset TuSimple [42], es uno de los varios benchmarks que existen para el
entrenamiento de algoritmos de inteligencia artificial con capacidades de conduccion
autonoma. Este dataset en concreto contiene datos para la deteccion de carriles y para la
estimacion de velocidad.

Me centraré en el dataset de deteccién de carriles dado que es el que he utilizado para
este trabajo:

4.2.1.1 CARACTERISTICAS

e Complejidad
o Condiciones climaticas buenas y medias
o Diferentes horas del dia
o Autopistas de 2, 3y 4 carriles
o Diferentes condiciones de trafico
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e Tamafio

o Los datos de entrenamiento contienen 3626 clips de video de 20 frames
cada uno pero solamente hay un frame anotado por cada clip. Es decir,
existen 3626 frames anotados.

o Los datos de testeo contienen 2782 clips de video de 20 frames cada uno
pero al igual que en los datos de entrenamiento, solamente hay un frame
anotado por cada clip. Es decir, existen 2782 frames anotados.

o Los frames tienen un tamafio de 1280 pixeles de ancho x 720 pixeles de
alto.

e Tipo de anotaciones
o Las anotaciones son coordenadas que marcan los carriles.

4.2.1.2 DETALLES DE ESTRUCTURA Y FORMATO

El dataset TuSimple no viene con los carriles dibujados por defecto y para poder entrenar
al modelo, hay que preprocesar todos estos datos. Antes de este preprocesamiento
debemos entender la estructura y el formato en el que se guardan los datos para poder
manipularlos:

Dentro del directorio principal del dataset, existe un directorio con las muestras de
entrenamiento y otro con las muestras de testeo. La estructura de ambos directorios es la
siguiente:

e Clips/. Este directorio contiene todos los clips de video
o Clip_1/. Este directorio contiene todos los frames que forman el primer
clip de video.
= 1.jpg. Este es el primer frame del clip de video.
= 20.jpg. Este es el altimo frame del clip de video.
©)
o Clip_n/. Este directorio contiene todos los frames que forman el ultimo
clip de video.
= 1.jpg. Este es el primer frame del clip de video.
= 20.jpg. Este es el tltimo frame del clip de video.
e Label data (fecha).json. Este fichero en formato JSON contiene toda la
informacion de las anotaciones de los frames. Este es el fichero que nos otorga la
informacidn necesaria para poder dibujar los carriles.

Una vez conocida la estructura de directorios, vamos a analizar la estructura y el formato
del fichero .json que contiene la informacidon con las anotaciones:
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{

‘lanes’: Lista que contiene la anchura a la que estan las coordenadas de los carriles
‘h_sample’: Lista que contiene la altura a la que estan las coordenadas de los carriles
‘raw_file’: String que contiene el path del frame numero 20 del clip de video.

¥

Como maximo habrd 5 marcas de carril. Se esperan 4 marcas de carril (carril actual y
carril izquierdo/derecho) pero puede aparecer un carril adicional que se utilizara cuando
se cambia de carril. De esta manera, no habra confusion para saber cual es el carril actual.

Todas las marcas de los carriles tienen las mismas alturas (estas alturas estan registradas
en el campo ‘h_sample’). Esto significa que se puede emparejar cada elemento de un
carril con los elementos del campo ‘h_sample’ para obtener la coordenada de la marca
del carril en las imagenes.

Ademas, los carriles estan alrededor del centro de la vista, lo que anima al vehiculo de
conduccion auténoma a centrarse en el carril actual y en los carriles izquierdo/derecho.
Estos carriles son esenciales para el control del coche.

4.2.1.3 PREPROCESADO

Una vez comprendida la estructura de los directorios del dataset TuSimple y la estructura
y el formato de las anotaciones, es hora de hablar del preprocesado.

Para poder llevar a cabo el modelo de LaneNet, se necesita preprocesar las imagenes de
una manera especifica: hay que redimensionar las imagenes originales a 256 pixeles de
altura x 512 pixeles de anchura, crear una méscara binaria en el que las lineas se marquen
con 1s y todas las demas partes de la imagen se marquen con 0s y crear una mascara de
instance segmentation en las que cada linea del carril tenga un identificador diferente (se
identificara utilizando colores diferentes para cada linea).

Sin embargo, si simplemente dibujamos las marcas de nuestro archivo .json, lo que
conseguiremos es esto:
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llustracién 13: Ejemplos de imagenes del dataset TuSimple sin preprocesar

Fuente: https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection
Autor:_http://www.tusimple.ai

Como se puede ver en la ilustracion 13, si solamente marcamos las iméagenes con las
coordenadas del archivo .json, solo conseguiremos algunos puntos sobre cada una de las
lineas de la calzada, como se puede apreciar en verde. Estas imagenes preprocesadas no

le seran utiles a LaneNet dado que busca otro tipo de preprocesado en sus imagenes
para poder ser entrenada y testeada:

Binary Image

Instance Image

Binary Image Instance Image

Binary Image Instance Image

llustracion 14: Input, mascaras binarias y mascaras de instancias
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Sin embargo, como podemos observar en la ilustracion 14, una vez obtenidas las
coordenadas podemos ajustar una funcién polinémica de segundo grado sobre las
coordenadas. Gracias a este método, las coordenadas pasan de ser Unicamente unos
pocos puntos distribuidos en las lineas de los carriles, a marcar todas las lineas de los
carriles.

Si prestamos atencion a la ilustracion 14, podemos observar las imagenes originales
redimensionadas a 256 pixeles de altura x 512 pixeles de anchura en la izquierda de la
ilustracion. En la columna central, podemos ver tres mascaras binarias creadas
ajustando un polinomio de segundo grado a las coordenadas del archivo .json.
Finalmente, en la derecha del todo, podemos observar cada uno de los carriles
identificados con diferentes colores, también conocido como instance segmentation.
Estas Gltimas imégenes con colores en cada linea de carril son las imagenes que
queremos predecir a partir de las imagenes originales. Es decir, el input de nuestro
modelo seran imagenes a color y el output sera la instance segmentation de las lineas de
los carriles.

4.2.2 GOOGLE COLABORATORY

Dado que no es un proyecto pensado para poner en produccion, los notebooks de Google
Colaboratory han sido la principal herramienta que se ha utilizado para desarrollar este
proyecto. En un principio, se ha utilizado la version gratuita, pero entrenar un modelo del
calibre de LaneNet ha requerido de una mayor cantidad de memoria RAM y de
computacion en GPU. Por ello, también se ha utilizado la version de pago Google
Colaboratory Pro.

L lanenet_model.ipynb
- Py O comen: 2t Comparte €2 o
Archive Editar Ver Insertar Entomo de ejecucion Heramientas Ayuda I

(&8

indice x  *+Cédigo + Texto e - o, A
~ Towards End-to-End Lane Detection: an Instance Segmentation Approach

~ Importing Dependencies

Method 2 for Instance Segmentation
Clustering (EFFICIENT)

B Seccisn

llustracion 15: Interfaz de Google Colaboratory
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5. DESARROLLO DEL PROYECTO

5.1 METODOLOGIA REALIZADA

Debido a la magnitud y complejidad de LaneNet, se ha realizado el proyecto de manera
incremental abordando las diferentes partes del proyecto en un orden secuencial
empezando por la rama de segmentacion binaria, siguiendo con la rama de embedding y
finalizando con el post-procesado para lograr una correcta segmentacion de instancias de
los carriles.

5.1.1 E-NET

Como se ha comentado en el apartado 4, el modelo LaneNet hace uso de la arquitectura
E-Net [43]. Este modelo es un autoencoder, por lo que su arquitectura de encode-decode
es muy compacta y rapida a la hora de hacer inferencias. En el dominio de la percepcion
de los vehiculos autonomos la velocidad de inferencia es de gran importancia y este
motivo, junto con que es uno de los modelos liderando el estado del arte en la
segmentacion semantica en tiempo real han tenido un gran peso en su eleccion. Por ello,
E-Net ha sido utilizado como backbone dentro de LaneNet.

Siguiendo el paper de LaneNet [1], la arquitectura de E-Net ha sido modificada para
recibir un input de 256 de alto x 512 de ancho a diferencia del input que recibe en el paper
original [43] de 512 de alto x 512 de ancho.
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Name

Type

Output size

initial

16 x 256 x 256

bottleneck1.0

4 x bottleneckl.x

downsampling

64 x 128 x 128
64 x 128 x 128

bottleneck2.0
bottleneck2.1
bottleneck2.2
bottleneck2.3
bottleneck2.4
bottleneck2.5
bottleneck2.6
bottleneck2.7
bottleneck2.8

downsampling

dilated 2
asymmetric 5
dilated 4

dilated 8
asymmetric 5
dilated 16

128 x 64 x 64
128 x 64 x 64
128 x 64 x 64
128 x 64 x 64
128 x 64 x 64
128 x 64 x 64
128 x 64 x 64
128 x 64 x 64
128 x 64 x 64

Repeat section 2, without bottleneck2.0

bottleneck4.0 upsampling 64 > 128 x 128
bottleneck4.1 64 > 128 x 128
bottleneck4.2 64 x 128 x 128

bottleneck5.0 upsampling 16 x 256 x 256
bottleneck5.1 16 x 256 x 256
fullconv C % 512 x 512

llustracion 16: Arquitectura E-Net en el paper original

Autor: Abhishek Chaurasia, Sangpil Kim & Eugenio Culurciello
Fuente: 1606.02147v1.pdf (arxiv.orq)

En la ilustracién 16, se puede ver la arquitectura completa del paper original de E-Net
[43]. Esta arquitectura esté dividida en varias fases y se pueden distinguir mediante las
lineas horizontales y el primer digito después del nombre de cada bloque. A pesar de que
en esta ilustracion vemos que el output es de una dimension de 512x512xel nimero de
canales, LaneNet tiene dos ramas en las que tiene outputs de 256x512x1 para la rama de
la méascara binariay 256 x 512 x 4 para la rama del embedding. Por esta razon, puede que
algunos de los valores intermedios de la tabla tampoco se ajusten al backbone final
utilizado en LaneNet.

Hay dos bloques de construccion principales en E-Net en los que se construye toda la red.
El denominado bloque inicial y el bottleneck module 0 médulo de cuello de botella en
espafiol:
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Input

— .

3x3, stride 2 MaxPooling

\‘/

Concat

(a)

llustracion 17: Bloques de construccion de E-Net

Autor: Abhishek Chaurasia, Sangpil Kim & Eugenio Culurciello
Fuente: 1606.02147v1.pdf (arxiv.orq)

En el bloque (a), podemos ver el denominado bloque inicial. Este bloque, hace una
operacion de max pooling y una convolucion 2D de 13 filtros con un kernel de 3x3
utilizando un stride de 2. Una vez hechas estas operaciones, los mapas de caracteristicas
resultantes se concatenan y suman un total de 16 mapas de caracteristicas.

En el bloque (b), podemos ver el denominado bottleneck module. Existen variaciones de
este modulo a lo largo de toda la arquitectura E-Net y en estas, las convoluciones 2D
pueden ser regulares, dilatadas o convoluciones totales también conocidas como
deconvoluciones. Estas convoluciones pueden tener filtros con kernels de 3x3 o de 5x5
descompuestas en 2 convoluciones asimétricas (una convolucion de 5x1 y otra de 1x5).

Todos los bottleneck modules consisten en convoluciones 1x1 para reducir la
dimensionalidad, una convolucidn principal de 3x3 que puede ser regular, dilatada o
total, una expansion de 1x1 y cada una de las convoluciones mencionadas cuentan con
una capa de batch normalization y una funcién de activacion PReLU entre ellas.

Si el médulo esta haciendo downsampling, se afiade una capa de max pooling a la rama
principal y la primera convolucion 1x1 para reducir la dimensionalidad se reemplaza
por una convolucion 2x2 con un stride de 2.

En lo que a la regularizacion respecta, se utilizan capas de spatial dropout de p=0.01
antes del bottleneck module 2.0 y de p=0.1 después del bottleneck module 2.0.

Si juntamos todo lo mencionado anteriormente, nos queda lo siguiente:

1. El codificador o encoder en las fases 1, 2 y 3. Estas fases consisten en 5 bloques
bottleneck con la excepcion de que en la fase 3 no se hace downsample.
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2.

3.

El decodificador o decoder en las fases 4 y 5. La fase 4 tiene 3 bottleneck modules
y la fase 5 tiene 2.

Una vez implementadas estas 5 fases, E-Net se completa utilizando una capa
fullconv también conocida como capa deconvolucional de las mismas
dimensiones de ancho y de alto que el input pero con el mismo numero de canales
a las clases que se quieren predecir. En nuestro caso el nimero de clases sera 1
por lo que nuestro output de E-Net previo a implementar las dos ramas restantes
sera de 256x512x1.

Otras excepciones a tener en cuenta a la hora de implementar E-Net son las siguientes:

No utilizan el valor del bias en ninguna de las proyecciones.

Entre cada capa de convolucion y funcién de activacion se utiliza una capa de
batch normalization.

En el decodificador, se reemplaza la capa de max pooling por la capa de max
unpooling y el padding también es reemplazado por la regularizacion spatial
convolution sin utilizar el valor de bias.

Se utiliza un learning rate de 5e-4.

Se utiliza un optimizador Adam.

Se utiliza un regularizador L2 a nivel de kernel de 2e-4

5.1.2 BINARY SEGMENTATION

Una vez comprendida la estructura y el backbone de LaneNet, procedo a explicar la rama
de segmentacion binaria:

Como se ha explicado en el apartado 4.1.1, esta rama devuelve una maéscara binaria
identificando las lineas del carril.

Para lograr que la red identifique las lineas de los carriles y no las pase por alto, es
necesario crear una funcion de pérdida llamada weighted categorical crossentropy. Si
nos fijamos en la ilustracién 10, se puede observar que las lineas de los carriles y el
background estan claramente desbalanceados. Para ello, tenemos que dar mayor peso a
los pixeles de los carriles consiguiendo asi que el modelo se centre en predecir estas
lineas. Para definir la funcion weighted categorical crossentropy primero es necesario
invertir los pesos de los pixeles de los carriles y los pixeles del background y de esta
manera forzar al modelo a dar mayor peso a los pixeles de los carriles. De la siguiente
manera, se invertirian los pesos de una sola mascara binaria:
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pixelsyqckgrouna €quivale al nimero de pixeles de background que contiene la imagen
binaria

C es una constante definida por el paper [1] con el valor 1.02
Wiane €quivale al nuevo valor de los pesos de los carriles

Whackgrouna €quivale al nuevo valor de los pesos del background

Una vez invertidos los pesos, podemos calcular la funcion weighted categorical
crossentropy de la siguiente manera:

n
loss = —Zyi -log(3) - W;

i=1

y; equivale al ground truth de la imagen binaria en la posicion i-ésima convertida a one
hot encoding

y, equivale a la distribucion de probabilidades por pixel de la imagen binaria

W; equivale a los pesos invertidos del carril y el background de la imagen en la posicion
i-ésima

n equivale al tamafio del batch

5.1.3 EMBEDDING

Otra de las ramificaciones es la rama del embedding. Esta rama, como se ha mencionado
en el apartado 4.1.2, devuelve una representacion N-dimensional del output de la mascara
binaria. Este output N-dimensional junto con la méascara binaria de la otra ramificacion,
nos facilita utilizar un algoritmo de clustering para identificar con mayor facilidad cada
linea del carril en el post-procesado para lograr una segmentacion de instancias.

Para lograr una separacion entre cada linea del carril y poder clusterizar cada linea con
facilidad, muchos de los métodos de segmentacién mas utilizados no son adecuados para
la segmentacién de lineas de carril porque estan hechos para segmentar elementos mas
compactos y las lineas no lo son. Por ello, se utiliza un método de aprendizaje por métrica
de distancia propuesto por DeBrabandere et al. [35].

Aplicando la discriminative loss function o funcién de pérdida discriminativa en espafiol,
la rama de embedding es entrenada para que la distancia entre los pixeles del embedding
pertenecientes a la misma linea del carril sea pequefia y la distancia entre los pixeles del
embedding de diferentes lineas del carril sea grande. Gracias a esto, los pixeles de la
misma linea se clusterizaran juntos formando clusters Unicos por cada linea del carril.
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Esta funcion de pérdida genera una fuerza de empuje entre clusters para alejarlos lo
maximo posible y una fuerza de traccion para acercar los diferentes pixeles a su cluster
mas cercano:

<:> inter-cluster push force

<= intra-cluster pull force

llustracion 18: Visualizacién del resultado al aplicar la discriminative loss function

Fuente: https://arxiv.org/pdf/1708.02551.pdf
Autor: B. De Brabandere, D. Neven & L. Van Gool

Para lograr implementar esta funcién de pérdida, es necesario comprender sus 3 partes:

1. Fuerza de traccién. Se toman todos los pixeles de una instancia y se calcula su
media. La fuerza de traccion atraera a todos los pixeles del embedding de la
misma instancia al mismo punto. En resumen, esta parte reduce la varianza del
embedding por cada instancia.

(&) N
1 I «— N .92
L-t'u.r — F Z A\yﬁ Zl [Hnuf - 1;” o é\']+

c=1

C equivale al nimero de clusters
U equivale al punto medio del cluster ¢
&, equivale al umbral de la fuerza de traccién

N, equivale a todos los puntos que forman un cluster ¢

2. Fuerza de empuje. Se toman todos los puntos centrales del espacio del
embedding y se empujan entre ellos para alejarlos.
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C e}
1 e 2
Liiss = m Z: Z [Z(XI - ||H(-_, - H(-n”}q

C equivale al nimero de clusters
Uc equivale al punto medio del cluster ¢

&4 equivale al umbral de la fuerza de empuje

3. Regularizacién. Evita que los centros estén demasiado lejos del origen.

s
1
L’rr’_r] - F Z”,”(H

c=1

C equivale al nimero de clusters
U equivale al punto medio del cluster ¢
Una vez calculadas las 3 partes, el valor de la discriminative loss se calcularia de la

siguiente manera:

L=a- L!'m' + 8- L(h'.sr + - Lr'r-‘g

:ﬁ:
y = 0.001

Si nos fijamos en [35], podemos ver como esta funcion de pérdida es capaz de agrupar
puntos muy heterogeneos para lograr una segmentacion de instancias:
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llustracion 19: Resultado de convergencia en la funcion discriminative loss

Fuente: https://arxiv.org/pdf/1708.02551.pdf
Autor: B. De Brabandere, D. Neven & L. Van Gool

Como se puede observar en la ilustracion 19, utilizando la funcion discriminative loss,
partiendo de unos pixeles muy heterogeneos y sin un orden aparente se pueden agrupar
facilitando el posterior clustering para conseguir la segmentacion de instancias. De esta
misma manera, se creara el embedding N-dimensional que separara los pixeles
pertenecientes a lineas del carril diferentes facilitando su posterior clustering y
segmentacion de instancias.

5.1.4 INSTANCE SEGMENTATION

La instance segmentation se basa en identificar cada uno de los carriles en la imagen a
nivel de pixel y saber diferenciarlos. Para ello, utilizamos los dos outputs de las ramas de
E-Net aplicando la mascara binaria predecida a cada uno de los canales del embedding.

Una vez aplicada la mascara sobre el embedding, se puede aplicar un algoritmo de
clustering como MeanShift o DBSCAN para conseguir la segmentacion de instancias.
Este método, aunque funciona, no es para nada eficiente ya que el algoritmo de clustering
tiene que clusterizar 512x256x4 pixeles. Esto computacionalmente es muy lento en el
caso de MeanShift y en el caso de DBSCAN, ademas de ser muy lento, la cantidad de
memoria RAM necesaria se dispara haciéndolo inviable.

Por ello, en lugar de clusterizar todos los pixeles, se ha aplicado la méascara binaria al
embedding por cada canal y posteriormente se ha aplicado MeanShift pero solamente a
los pixeles cuyo valor no sea 0. Es decir, se ha aplicado el clustering a las lineas
desechando todo el background.

Una vez hecho esto, a cada cluster se le ha aplicado un color diferente para poder
diferenciar dichas lineas:

100

150

200

250

100 200 300 400 500

llustracion 20: Imagen con mascara de instancias superpuesta
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Como se puede ver en la ilustracién 20, una vez aplicado el algoritmo MeanShift, se han dividido
las lineas en clusters y se le ha aplicado un color diferenciador a cada una de las lineas.

5.2 TUSIMPLE DATASET

Como se ha explicado previamente en la seccién 4 de la memoria, descripcion del
proyecto, el dataset a utilizar es el TuSimple dataset. Este es un conjunto de datos
utilizado como benchmark en competiciones y algoritmos de vision artificial aplicada a
la percepcion de vehiculos autdnomos. Para una correcta ingesta de los datos en el modelo
desarrolado, ha sido necesario crear dos scripts de preprocesado:

5.2.1 SCRIPTS DE PREPROCESADO

Los scripts desarrollados para el correcto preprocesamiento del dataset TuSimple son los
siguientes:

5.2.1.1 PROCESS_TUSIMPLE_DATASET.PY

Este script tiene como objetivo preprocesar el dataset TuSimple creando a partir de las
iméagenes originales y las anotaciones, las iméagenes binarias y las iméagenes de instancia
de carril.

Para ejecutar este script es necesario haber descargado previamente el benchmark
TuSimple, descomprimir el archivo .zip y ejecutar el siguiente comando:

python process_tusimple_dataset.py --src_dir “path hasta el archivo
descomprimido del benchmark TuSimple”

Una vez ejecutado este script, se crearan las carpetas test y train que contendran a su vez
3 carpetas mas: una carpeta con las imagenes originales, otra con las imagenes binarias y
otra con las imagenes de instancia de carril. Ejemplos de estas imagenes pueden verse en
la ilustracion 13.

5.2.1.2 CONVERT_TUSIMPLE DATASET TO_BINARY.PY

Este script tiene como objetivo convertir todas las imagenes preprocesadas en arrays
numpy en el que cada imagen estara redimensionada a 256 pixeles de altura x 512 pixeles
de anchura.

Para ejecutar este script es necesario haber preprocesado previamente el benchmark
TuSimple con el script anteriormente mencionado y ejecutar el siguiente comando:

python convert_tusimple_dataset to_binary.py
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Una vez ejecutado este script, se creara una carpeta adicional dentro de las carpetas test
y train las cuales contendrén a su vez los 3 archivos binarios .npy que contendran los
arrays numpy con las imégenes preprocesadas.
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6. RESULTADOS DEL PROYECTO

En esta seccion expondré la progresion de los resultados del modelo LaneNet
implementado desde 0 asi como los problemas que se han ido encontrando durante su
implementacion.

Inicialmente, se implementd la rama de la segmentacion binaria utilizando una sola clase,
una funcion de activacion sigmoide y una weighted binary crossentropy loss. Para
implementar esta funcion de pérdida, primero era necesario calcular los mapas de pesos
de la siguiente manera:

weight_maps;gne = weight;gne * gt_binaryy,tcn
Weight_mapsbackground = Weightbackground * (1 - gt_binarYbatch)

weight; .. equivale al nuevo valor de los pesos de los carriles

weightpgergrouna €quivale al nuevo valor de los pesos del background

gt_binary, ..., €quivale al lote de imagenes binarias anotadas

Una vez calculados estos mapas de pesos, se aplica la funcién de pérdida weighted
binary crossentropy:

batch size

loss = — Z Vi % 'Weight—mapslanei +A-y)-A-%) 'Weight—mapsbackgroundi
i=1
y; equivale a la imagen binaria en la posicion i que se utiliza como ground truth

¥, equivale a la prediccion de la imagen binaria generada por el modelo

weight_maps;,n. €quivale a una imagen con los nuevos pesos de los carriles

weight_mapspqckgrouna €quivale a una imagen con los nuevos pesos del background

Sin embargo, esta funcién de pérdida tardaba mucho en converger y sus resultados no
acababan de diferenciar las lineas del background de una manera eficaz. Ademas, el
entrenamiento y la accuracy de la segmentacion binaria eran muy inconsistentes por lo
que cada entrenamiento lograba resultados diferentes de entre un 70% y un 95% de
accuracy. Este es el mejor resultado que se logro con este nimero de clases, funcion de
activacion y funcion de pérdida:
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llustracion 21: Mejor accuracy de la rama de segmentacion binaria con weighted binary crossentropy

Como se puede ver en la ilustracion 21, la rama de segmentacion binaria logré unos muy
buenos resultados en lo que a accuracy respecta. Sin embargo, necesité al menos 100
epochs y muchisimos intentos de entrenamiento. Ademas, como podremos ver en la
siguiente ilustracion, el resultado no lleg6 a ser lo suficientemente bueno porque la
prediccidn tenia muchisimo ruido:

llustracion 22: Imagen original, prediccion binaria y ground truth binaria

Si prestamos atencion a la columna central de la ilustracién 22 podemos ver una gran
cantidad de ruido en comparacién con el ground truth por lo que es un resultado que no
nos valdria para la posterior segmentacion de instancias. Sin embargo, como he
explicado previamente en el apartado 5.1.2, se cambid la funcién de pérdida de la
weighted binary crossentropy a la weighted categorical crossentropy y los resultados
mejoraron de una manera muy significativa:
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llustracion 23: Imagen original, mascara binaria, embedding y ground truth de segmentacion

En esta ilustracion 23 podemos observar la gran mejora de la mascara binaria respecto a
la ilustracion 22. Ya no existe el ruido como el generado por la anterior funcién de
pérdida y todos los valores de las lineas son 1s a diferencia de la anterior prediccién que
eran numeros entre 0 y 1. Sin embargo, podemos ver como en estos momentos del
desarrollo la prediccion del embedding no esta funcionando bien.

Después de revisar la red durante varios dias, se comprendi6 que en la arquitectura de
E-Net, el backbone de LaneNet, no estaban bien implementadas las ramificaciones de la
segmentacion binaria y el embedding. En vez de empezar la ramificacion una vez
terminada la parte del encode y hacer la decodificacidn por separado, se decodificaban
ambas en una misma ramay en la Gltima capa se creaba la rama de la mascara binaria y
la del embedding. Esto, junto con una mala implementacién de la discriminative loss
function estaba creando un problema porque no permitia que los kernels de la parte del
embedding pudieran ajustarse para lograr un mejor resultado.

Muchos intentos después, no se consiguio arreglar el output del embedding. Este,
siempre devolvia representaciones de 256x512x4 llenas de 0s en lugar de separar las
diferentes lineas de carril en clusters para facilitar su instance segmentation. Hay varias
hipotesis por las que se creia que el embedding no estaba funcionando bien:

1. El paper original [1] no ha explicado algunos detalles importantes para la
implementacion de esta rama.

2. Ladiscriminative loss function utilizada no es correcta del todo. Esto implicaria,
que los repositorios con mejores valoraciones de github no estarian siendo
implementados de una manera fiel al paper [1].

3. Estéa ocurriendo el problema del desvanecimiento de los gradientes y por esto lo
valores del embedding estan convergiendo en 0.
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Finalmente, se detectd el error en la discriminative loss function. Este, fué un error de
codificacion que no permitia que el framework de Keras actualizara los gradientes de

algunas capas y por lo tanto no se lograban resultados. Una vez corregido este fallo de
codificacion los resultados fueron muy buenos:

Instance Ground Truth

Binary Image Prediction

Input Image Embedding Image

100 200 300 300 400 500

Input Image Embedding Image

llustracion 24: Resultados finales de segmentacion binaria y embedding

En la ilustracion 24, se puede observar el mejor resultado de mi implementacion de
LaneNet. A diferencia de la ilustracion, 23, el embedding ha sido arreglado y si se observa
fijamente, se puede apreciar como los pixeles tienen valores diferentes para cada una de
las lineas. Esto, facilitara el clustering para posteriormente hacer la segmentacion de
instancias.

El resultado final a nivel de output con un learning rate de 0.0005, batch size de 8,
regularizacion 12 a nivel de cada kernel convolucional de 0.0002, un valor de @ = 1,

B =1,y =0.001, 84 = 3.0, 8, = 0.5y un optimizador Adam, es el resultado que se
puede ver en la ilustracion 24. En este resultado la mascara binaria llega a un 95.3% de
accuracy y el embedding logra separar los valores de las lineas de carril para facilitar el
posterior cluster y la segmentacion de instancias.

En lo que a la instance segmentation se refiere, a pesar de la falta de detalles del paper
de LaneNet [1] se han logrado resultados similares y sin lugar a dudas han cumplido
tanto mis expectativas como las de mi director del proyecto.

Este seria un ejemplo del modelo LaneNet en accidn puesto a prueba sobre diferentes
imagenes:
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llustracion 25: Aplicando LaneNet sobre imagenes reales

En la ilustracion 25, se puede ver como LaneNet consigue diferenciar las lineas de carril
con gran precision. Esto podria mejorarse utilizando una transformacion de perspectiva
utilizando el modelo H-Net mencionado en el paper [1]. Sin embargo, este no era uno de
los objetivos del proyecto por lo que queda pendiente para trabajos futuros.

Para lograr esta precision han sido necesarias 41 epochs y alrededor de 6 horas de

entrenamiento:

35 1

3.0 1

2.5 1

210 1

15 4

104

0.5 1

0.0 A

— loss
val_loss

llustracion 26: Loss general durante el entrenamiento de LaneNet
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Si nos fijamos en las ilustraciones 26, 27 y 28, podemos visualizar como se ha ido minimizando
tanto la funcion de pérdida general como las funciones de pérdida de cada rama de LaneNet. A
simple vista, estos graficos sugieren que LaneNet ha convergido bien como se proponian en el
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llustraciones 27 y 28: Loss de la rama del embedding y loss de la rama de segmentacion

paper [1].

Para mas informacién y poder conseguir un entendimiento mas profundo sobre LaneNet, este es
el enlace de mi notebook de Google Colaboratory con el que tendréis acceso como lectores:

https://drive.google.com/drive/folders/1q rV3KVk5fUe6bRIcCfltXaitmQWoeAi?usp=sharing
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7. PLANIFICACION DEL PROYECTO

Se ha planificado el proyecto de una manera incremental y modular. Estos han sido los
pasos planificados a seguir en orden cronolégico:

1.

Reunir informacion sobre algoritmos y metodos utilizados en el sector de la
conduccion auténoma

a. Leer papers

b. Leer articulos

Preparar el dataset TuSimple para la posterior ingesta del modelo
a. Comprender la naturaleza del dataset TuSimple
b. Preprocesar el dataset TuSimple
c. Convertir las imagenes preprocesadas a binario para facilitar la ingesta

Implementacion de LaneNet
a. Implementar arquitectura E-Net sin afiadir las ramas de output
b. Implementar rama de segmentacion binaria
c. Implementar rama de embedding
d. Implementar el método de clustering para crear la instance segmentation

Analizar el desempefio de LaneNet utilizando la accuracy como en el paper

Crear clips de video poniendo el modelo a prueba en videos con escenarios
reales

a. Fécil. Clip de conduccion en autopista

b. Intermedio. Clip de conduccion en autopista

c. Dificil. Clip de conduccion en autopista

d. Muy dificil. Clip de conduccion en interseccion de ciudad
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8. PRESUPUESTO
CONCEPTO MES 0 MES 1 MES 2 MES 3
Suscripcién Mensual a Google | 9.99 € 9.99€ 9.99€ 9.99€
Colab Pro
TOTAL 39.96 €

Inicialmente, el presupuesto del proyecto iba a ser de 0 € pero debido a las limitaciones del
hardware y de la computacion en la nube gratuita disponible, se han gastado 9.99 € al mes en
una suscripcién a Google Colab Pro. Durante los 4 meses de duracion del proyecto, este gasto
ha supuesto un gasto total de 39.96 €.
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9. CONCLUSIONES Y TRABAJOS FUTUROS

En este proyecto, se ha recreado la arquitectura que aparece en el paper de LaneNet [1]
para lograr una segmentacion de instancias en tiempo real sin indicar el nimero de
carriles de antemano. Se han utilizado los mismos hiperparametros que se indican en el
paper [1] y las imagenes del dataset TuSimple. A pesar de la falta de detalles en la
implementacidn por parte del paper, se ha conseguido implementar la arquitectura
LaneNet con buenos resultados. Con ayuda de mi director del proyecto de fin de master,
me he dado cuenta de que los repositorios de github con mejores valoraciones de
internet en la implementacion de LaneNet estan mal implementados. Estos repositorios,
rondaban las 1500 estrellas en github lo cual indica que son muy populares pero, a pesar
de su popularidad, su manera de computar el embedding utilizando la mascara binaria es
erronea ya que no aplican la mascara binaria a los resultados del embedding para la
posterior segmentacion de instancias sino que aplican un postprocesado directamente
sobre el embedding y la méascara binaria y afiaden diferentes umbrales para eliminar el
ruido y posteriormente poder hacer el clustering.

Volviendo a mi implementacion, el modelo esta implementado al completo excepto por
el apartado de lane fitting el cual no era un objetivo a cumplir para este proyecto. A pesar
de los problemas que se han tenido durante toda la implementacion, el proyecto ha sido
un éxito.

Este proyecto de fin de master me ha supuesto uno de los mayores retos a los que me he
enfrentado tanto por su complejidad como por lo novel que soy en el campo del deep
learning y la investigacion. He podido experimentar una gran mejoria en mis habilidades
para comprender papers y en el deep learning y he comprendido muchisimos conceptos
que hace unos meses me resultaban muy difusos.

En trabajos futuros, se podria implementar la red H-Net al igual que en el paper original
[1] para lograr un mejor ajuste de los carriles al crear una transformacién de perspectiva
y una vez logrado esto, se podrian utilizar técnicas de data augmentation y anotar mas
imagenes del TuSimple dataset para ver hasta donde es capaz de llegar este modelo.

Otro gran problema con los vehiculos autonomos es la deficiente explicabilidad e
interpretabilidad de los modelos de deep learning y esta podria ser una buena direccion a
tomar para trabajos futuros. Un vehiculo autonomo que toma decisiones sin que los
humanos entendamos muy bien porque es algo muy peligroso ya que la conduccion es
una accién que en caso de hacerse mal puede causar tanto dafios humanos como
estructurales.

Para concluir, durante el desarrollo de este proyecto he podido observar el gran futuro y
a la gran velocidad a la que evoluciona este campo y estoy seguro de que seguira siendo
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de esta manera y que seguira atrayendo una gran inversion por parte de la academia pero
sobre todo por parte de las empresas privadas.
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